Pre-trained checkpoints can be found on the NGC Catalog.
Brief descriptions of models and the commands used to train them are found below.
ffhq512-64.pkl
FFHQ 512, trained with neural rendering resolution of 64x64.
# Train with FFHQ from scratch with raw neural rendering resolution=64, using 8 GPUs.
python train.py --outdir=~/training-runs --cfg=ffhq --data=~/datasets/FFHQ_512.zip \
--gpus=8 --batch=32 --gamma=1 --gen_pose_cond=True
ffhq512-128.pkl
Fine-tune FFHQ 512, with neural rendering resolution of 128x128.
# Second stage finetuning of FFHQ to 128 neural rendering resolution.
python train.py --outdir=~/training-runs --cfg=ffhq --data=~/datasets/FFHQ_512.zip \
--resume=ffhq-64.pkl \
--gpus=8 --batch=32 --gamma=1 --gen_pose_cond=True --neural_rendering_resolution_final=128 --kimg=2000
Same as the models above, but fine-tuned using a rebalanced version of FFHQ that has a more uniform pose distribution. Compared to models trained on standard FFHQ, these models should produce better 3D shapes and better renderings from steep angles.
ffhqrebalanced512-64.pkl
# Finetune with rebalanced FFHQ at rendering resolution 64.
python train.py --outdir=~/training-runs --cfg=ffhq --data=~/datasets/FFHQ_rebalanced_512.zip \
--resume=ffhq-64.pkl \
--gpus=8 --batch=32 --gamma=1 --gen_pose_cond=True --gpc_reg_prob=0.8
ffhqrebalanced512-128.pkl
# Finetune with rebalanced FFHQ at 128 neural rendering resolution.
python train.py --outdir=~/training-runs --cfg=ffhq --data=~/datasets/FFHQ_rebalanced_512.zip \
--resume=ffhq-rebalanced-64.pkl \
--gpus=8 --batch=32 --gamma=1 --gen_pose_cond=True --gpc_reg_prob=0.8 --neural_rendering_resolution_final=128
afhqcats512-128.pkl
# Train with AFHQ, finetuning from FFHQ with ADA, using 8 GPUs.
python train.py --outdir=~/training-runs --cfg=afhq --data=~/datasets/afhq.zip \
--resume=ffhq-64.pkl \
--gpus=8 --batch=32 --gamma=5 --aug=ada --gen_pose_cond=True --gpc_reg_prob=0.8 --neural_rendering_resolution_final=128
shapenetcars128-64.pkl
# Train with Shapenet from scratch, using 8 GPUs.
python train.py --outdir=~/training-runs --cfg=shapenet --data=~/datasets/cars_train.zip \
--gpus=8 --batch=32 --gamma=0.3