-
Notifications
You must be signed in to change notification settings - Fork 248
/
label_smoothed_encouraging_loss.py
395 lines (367 loc) · 16 KB
/
label_smoothed_encouraging_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from dataclasses import dataclass, field
from typing import Optional
import torch
import torch.nn.functional as F
import numpy as np
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
from omegaconf import II
@dataclass
class AdjustLabelSmoothedEncouragingLossConfig(FairseqDataclass):
label_smoothing: float = field(
default=0.0,
metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"},
)
report_accuracy: bool = field(
default=False,
metadata={"help": "report accuracy metric"},
)
ignore_prefix_size: int = field(
default=0,
metadata={"help": "Ignore first N tokens"},
)
ignore_eos: bool = field(
default=False,
metadata={"help": "Ignore eos token"},
)
sentence_avg: bool = II("optimization.sentence_avg")
drop_worst_ratio: float = field(
default=0.0,
metadata={"help": "ratio for discarding bad samples"},
)
drop_worst_after: int = field(
default=0,
metadata={"help": "steps for discarding bad samples"},
)
use_rdrop: bool = field(
default=False, metadata={"help": "use R-Drop"}
)
reg_alpha: float = field(
default=1.0, metadata={"help": "weight for R-Drop"}
)
sample_patch_num: int = field(
default=196, metadata={"help": "sample patchs for v1"}
)
constraint_range: Optional[str] = field(
default=None,
metadata={"help": "constraint range"}
)
log_end: float = field(
default=0.75,
metadata={"help": "higher log_end is for cases with higher performance,"
" we recommend 0.75 or 0.5 as your first try."}
)
drop_best_ratio: float = field(
default=0.0,
metadata={"help": "ratio for discarding best samples"},
)
drop_best_after: int = field(
default=0,
metadata={"help": "steps for discarding best samples"},
)
def construct_rdrop_sample(x):
if isinstance(x, dict):
for key in x:
x[key] = construct_rdrop_sample(x[key])
return x
elif isinstance(x, torch.Tensor):
return x.repeat(2, *([1] * (x.dim()-1)))
elif isinstance(x, int):
return x * 2
elif isinstance(x, np.ndarray):
return x.repeat(2)
else:
raise NotImplementedError
def kl_loss(p, q):
p_loss = F.kl_div(p, torch.exp(q), reduction='sum')
q_loss = F.kl_div(q, torch.exp(p), reduction='sum')
loss = (p_loss + q_loss) / 2
return loss
def label_smoothed_nll_loss(
lprobs, target, epsilon, update_num, reduce=True,
drop_worst_ratio=0.0, drop_worst_after=0, use_rdrop=False, reg_alpha=1.0,
constraint_masks=None, constraint_start=None, constraint_end=None, drop_best_ratio=0.0,
drop_best_after=0,
):
if target.dim() == lprobs.dim() - 1:
target = target.unsqueeze(-1)
nll_loss = -lprobs.gather(dim=-1, index=target).squeeze(-1)
if constraint_masks is not None:
smooth_loss = -lprobs.masked_fill(~constraint_masks, 0).sum(dim=-1, keepdim=True).squeeze(-1)
eps_i = epsilon / (constraint_masks.sum(1) - 1 + 1e-6)
elif constraint_start is not None and constraint_end is not None:
constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
smooth_loss = -lprobs[:, constraint_range].sum(dim=-1, keepdim=True).squeeze(-1)
eps_i = epsilon / (len(constraint_range) - 1 + 1e-6)
else:
smooth_loss = -lprobs.sum(dim=-1, keepdim=True).squeeze(-1)
eps_i = epsilon / (lprobs.size(-1) - 1)
loss = (1.0 - epsilon - eps_i) * nll_loss + eps_i * smooth_loss
if drop_worst_ratio > 0 and update_num > drop_worst_after:
if use_rdrop:
true_batch_size = loss.size(0) // 2
_, indices = torch.topk(loss[:true_batch_size], k=int(true_batch_size * (1 - drop_worst_ratio)), largest=False)
loss = torch.cat([loss[indices], loss[indices+true_batch_size]])
nll_loss = torch.cat([nll_loss[indices], nll_loss[indices+true_batch_size]])
lprobs = torch.cat([lprobs[indices], lprobs[indices+true_batch_size]])
else:
loss, indices = torch.topk(loss, k=int(loss.shape[0] * (1 - drop_worst_ratio)), largest=False)
nll_loss = nll_loss[indices]
lprobs = lprobs[indices]
target = target[indices]
if update_num > drop_best_after:
loss, indices = torch.topk(loss, k=int(loss.shape[0] * (1 - drop_best_ratio)), largest=True)
nll_loss = nll_loss[indices]
lprobs = lprobs[indices]
target = target[indices]
ntokens = loss.numel()
nll_loss = nll_loss.sum()
loss = loss.sum()
if use_rdrop:
true_batch_size = lprobs.size(0) // 2
p = lprobs[:true_batch_size]
q = lprobs[true_batch_size:]
if constraint_start is not None and constraint_end is not None:
constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
p = p[:, constraint_range]
q = q[:, constraint_range]
loss += kl_loss(p, q) * reg_alpha
return loss, nll_loss, ntokens,lprobs,target
@register_criterion(
"adjust_label_smoothed_encouraging_loss", dataclass=AdjustLabelSmoothedEncouragingLossConfig
)
class AdjustLabelSmoothedEncouragingLossCriterion(FairseqCriterion):
def __init__(
self,
task,
sentence_avg,
label_smoothing,
ignore_prefix_size=0,
ignore_eos=False,
report_accuracy=False,
drop_worst_ratio=0,
drop_worst_after=0,
use_rdrop=False,
reg_alpha=1.0,
sample_patch_num=196,
constraint_range=None,
log_end=0.75,
drop_best_ratio=0.0,
drop_best_after=0,
):
super().__init__(task)
self.sentence_avg = sentence_avg
self.eps = label_smoothing
self.ignore_prefix_size = ignore_prefix_size
self.ignore_eos = ignore_eos
self.report_accuracy = report_accuracy
self.drop_worst_ratio = drop_worst_ratio
self.drop_worst_after = drop_worst_after
self.use_rdrop = use_rdrop
self.reg_alpha = reg_alpha
self.sample_patch_num = sample_patch_num
self.constraint_start = None
self.constraint_end = None
if constraint_range is not None:
constraint_start, constraint_end = constraint_range.split(',')
self.constraint_start = int(constraint_start)
self.constraint_end = int(constraint_end)
self.log_end = log_end
self.drop_best_ratio = drop_best_ratio
self.drop_best_after = drop_best_after
print('el, self.log_end=', self.log_end)
# @staticmethod
# def add_args(parser):
# """Add criterion-specific arguments to the parser."""
# # fmt: off
# parser.add_argument('--log_end', type=float, default=1.0)
def forward(self, model, sample, update_num=0, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
if isinstance(sample, list):
if self.sample_patch_num > 0:
sample[0]['net_input']['sample_patch_num'] = self.sample_patch_num
loss_v1, sample_size_v1, logging_output_v1 = self.forward(model, sample[0], update_num, reduce)
loss_v2, sample_size_v2, logging_output_v2 = self.forward(model, sample[1], update_num, reduce)
loss = loss_v1 / sample_size_v1 + loss_v2 / sample_size_v2
sample_size = 1
logging_output = {
"loss": loss.data,
"loss_v1": loss_v1.data,
"loss_v2": loss_v2.data,
"nll_loss": logging_output_v1["nll_loss"].data / sample_size_v1 + logging_output_v2["nll_loss"].data / sample_size_v2,
"ntokens": logging_output_v1["ntokens"] + logging_output_v2["ntokens"],
"nsentences": logging_output_v1["nsentences"] + logging_output_v2["nsentences"],
"sample_size": 1,
"sample_size_v1": sample_size_v1,
"sample_size_v2": sample_size_v2,
}
return loss, sample_size, logging_output
if self.use_rdrop:
construct_rdrop_sample(sample)
net_output = model(**sample["net_input"])
loss, nll_loss, ntokens = self.compute_loss(model, net_output, sample, update_num, reduce=reduce)
sample_size = (
sample["target"].size(0) if self.sentence_avg else ntokens
)
logging_output = {
"loss": loss.data,
"nll_loss": nll_loss.data,
"ntokens": sample["ntokens"],
"nsentences": sample["nsentences"],
"sample_size": sample_size,
}
if self.report_accuracy:
n_correct, total = self.compute_accuracy(model, net_output, sample)
logging_output["n_correct"] = utils.item(n_correct.data)
logging_output["total"] = utils.item(total.data)
return loss, sample_size, logging_output
def get_lprobs_and_target(self, model, net_output, sample):
conf = sample['conf'][:, None, None] if 'conf' in sample and sample['conf'] is not None else 1
constraint_masks = None
if "constraint_masks" in sample and sample["constraint_masks"] is not None:
constraint_masks = sample["constraint_masks"]
net_output[0].masked_fill_(~constraint_masks, -math.inf)
if self.constraint_start is not None and self.constraint_end is not None:
net_output[0][:, :, 4:self.constraint_start] = -math.inf
net_output[0][:, :, self.constraint_end:] = -math.inf
lprobs = model.get_normalized_probs(net_output, log_probs=True) * conf
target = model.get_targets(sample, net_output)
if self.ignore_prefix_size > 0:
lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
target = target[:, self.ignore_prefix_size :].contiguous()
if constraint_masks is not None:
constraint_masks = constraint_masks[:, self.ignore_prefix_size :, :].contiguous()
if self.ignore_eos:
bsz, seq_len, embed_dim = lprobs.size()
eos_indices = target.eq(self.task.tgt_dict.eos())
lprobs = lprobs[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
target = target[~eos_indices].reshape(bsz, seq_len-1)
if constraint_masks is not None:
constraint_masks = constraint_masks[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
if constraint_masks is not None:
constraint_masks = constraint_masks.view(-1, constraint_masks.size(-1))
return lprobs.view(-1, lprobs.size(-1)), target.view(-1), constraint_masks
def compute_loss(self, model, net_output, sample, update_num, reduce=True):
lprobs, target, constraint_masks = self.get_lprobs_and_target(model, net_output, sample)
if constraint_masks is not None:
constraint_masks = constraint_masks[target != self.padding_idx]
lprobs = lprobs[target != self.padding_idx]
target = target[target != self.padding_idx]
loss, nll_loss, ntokens, lprobs, target = label_smoothed_nll_loss(
lprobs,
target,
self.eps,
update_num,
reduce=reduce,
drop_worst_ratio=self.drop_worst_ratio,
drop_worst_after=self.drop_worst_after,
use_rdrop=self.use_rdrop,
reg_alpha=self.reg_alpha,
constraint_masks=constraint_masks,
constraint_start=self.constraint_start,
constraint_end=self.constraint_end
)
# for encouraging loss
probs = torch.exp(lprobs)
bonus = torch.log(torch.clamp((torch.ones_like(probs) - probs), min=1e-5)) # likelihood bonus
log_end = self.log_end
if log_end != 1.0: # e.g. 0.9
y_log_end = torch.log(torch.ones_like(probs) - log_end)
bonus_after_log_end = 1 / (log_end - torch.ones_like(probs)) * (probs - log_end) + y_log_end
# x:log_end, y torch.log(torch.clamp((torch.ones_like(probs) - probs), min=self.cl_eps))
bonus = torch.where(probs > log_end, bonus_after_log_end, bonus)
c_loss = F.nll_loss(
-bonus,
target.view(-1),
reduction='sum',
)
smoothing_c_loss = bonus.sum(dim=-1)
smoothing_c_loss = smoothing_c_loss.sum()
c_loss = c_loss * (1 - self.eps) + (self.eps / lprobs.size(-1)) * smoothing_c_loss
loss = loss + c_loss
# end for encouraging loss
return loss, nll_loss, ntokens
def compute_accuracy(self, model, net_output, sample):
lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
mask = target.ne(self.padding_idx)
n_correct = torch.sum(
lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask))
)
total = torch.sum(mask)
return n_correct, total
@classmethod
def reduce_metrics(cls, logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
loss_sum_v1 = sum(log.get("loss_v1", 0) for log in logging_outputs)
loss_sum_v2 = sum(log.get("loss_v2", 0) for log in logging_outputs)
nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs)
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
sample_size_v1 = sum(log.get("sample_size_v1", 0) for log in logging_outputs)
sample_size_v2 = sum(log.get("sample_size_v2", 0) for log in logging_outputs)
metrics.log_scalar(
"loss", loss_sum / sample_size, sample_size, round=3
)
metrics.log_scalar(
"loss_v1", loss_sum_v1 / max(sample_size_v1, 1), max(sample_size_v1, 1), round=3
)
metrics.log_scalar(
"loss_v2", loss_sum_v2 / max(sample_size_v2, 1), max(sample_size_v2, 1), round=3
)
metrics.log_scalar(
"nll_loss", nll_loss_sum / sample_size, ntokens, round=3
)
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
)
metrics.log_scalar(
"ntokens", ntokens, 1, round=3
)
metrics.log_scalar(
"nsentences", nsentences, 1, round=3
)
metrics.log_scalar(
"sample_size", sample_size, 1, round=3
)
metrics.log_scalar(
"sample_size_v1", sample_size_v1, 1, round=3
)
metrics.log_scalar(
"sample_size_v2", sample_size_v2, 1, round=3
)
total = utils.item(sum(log.get("total", 0) for log in logging_outputs))
if total > 0:
metrics.log_scalar("total", total)
n_correct = utils.item(
sum(log.get("n_correct", 0) for log in logging_outputs)
)
metrics.log_scalar("n_correct", n_correct)
metrics.log_derived(
"accuracy",
lambda meters: round(
meters["n_correct"].sum * 100.0 / meters["total"].sum, 3
)
if meters["total"].sum > 0
else float("nan"),
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True