-
Notifications
You must be signed in to change notification settings - Fork 12
/
ILP_Part_I.cu
185 lines (143 loc) · 5.54 KB
/
ILP_Part_I.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#include<stdio.h>
#define N_ITERATIONS 8192
#include "Utilities.cuh"
#include "TimingGPU.cuh"
#define BLOCKSIZE 512
//#define DEBUG
/********************************************************/
/* KERNEL0 - NO INSTRUCTION LEVEL PARALLELISM (ILP = 0) */
/********************************************************/
__global__ void kernel0(float * __restrict__ d_a, const float * __restrict__ d_b, const float * __restrict__ d_c, const int N) {
const int tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < N) {
float a = d_a[tid];
float b = d_b[tid];
float c = d_c[tid];
for (unsigned int i = 0; i < N_ITERATIONS; i++) {
a = a * b + c;
}
d_a[tid] = a;
}
}
/*****************************************************/
/* KERNEL1 - INSTRUCTION LEVEL PARALLELISM (ILP = 2) */
/*****************************************************/
__global__ void kernel1(float * __restrict__ d_a, const float * __restrict__ d_b, const float * __restrict__ d_c, const int N) {
const int tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < N / 2) {
float a1 = d_a[tid];
float b1 = d_b[tid];
float c1 = d_c[tid];
float a2 = d_a[tid + N / 2];
float b2 = d_b[tid + N / 2];
float c2 = d_c[tid + N / 2];
for (unsigned int i = 0; i < N_ITERATIONS; i++) {
a1 = a1 * b1 + c1;
a2 = a2 * b2 + c2;
}
d_a[tid] = a1;
d_a[tid + N / 2] = a2;
}
}
/*****************************************************/
/* KERNEL2 - INSTRUCTION LEVEL PARALLELISM (ILP = 4) */
/*****************************************************/
__global__ void kernel2(float * __restrict__ d_a, const float * __restrict__ d_b, const float * __restrict__ d_c, const int N) {
const int tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < N / 4) {
float a1 = d_a[tid];
float b1 = d_b[tid];
float c1 = d_c[tid];
float a2 = d_a[tid + N / 4];
float b2 = d_b[tid + N / 4];
float c2 = d_c[tid + N / 4];
float a3 = d_a[tid + N / 2];
float b3 = d_b[tid + N / 2];
float c3 = d_c[tid + N / 2];
float a4 = d_a[tid + 3 * N / 4];
float b4 = d_b[tid + 3 * N / 4];
float c4 = d_c[tid + 3 * N / 4];
for (unsigned int i = 0; i < N_ITERATIONS; i++) {
a1 = a1 * b1 + c1;
a2 = a2 * b2 + c2;
a3 = a3 * b3 + c3;
a4 = a4 * b4 + c4;
}
d_a[tid] = a1;
d_a[tid + N / 4] = a2;
d_a[tid + N / 2] = a3;
d_a[tid + 3 * N / 4] = a4;
}
}
/********/
/* MAIN */
/********/
int main() {
//const int N = 8192 * 64;
const int N = 8192;
//const int N = 1024;
TimingGPU timerGPU;
float *h_a = (float*)malloc(N*sizeof(float));
float *h_a_result_host = (float*)malloc(N*sizeof(float));
float *h_a_result_device = (float*)malloc(N*sizeof(float));
float *h_b = (float*)malloc(N*sizeof(float));
float *h_c = (float*)malloc(N*sizeof(float));
for (int i = 0; i<N; i++) {
h_a[i] = 2.;
h_b[i] = 1.;
h_c[i] = 2.;
h_a_result_host[i] = h_a[i];
for (unsigned int k = 0; k < N_ITERATIONS; k++) {
h_a_result_host[i] = h_a_result_host[i] * h_b[i] + h_c[i];
}
}
float *d_a; gpuErrchk(cudaMalloc((void**)&d_a, N*sizeof(float)));
float *d_b; gpuErrchk(cudaMalloc((void**)&d_b, N*sizeof(float)));
float *d_c; gpuErrchk(cudaMalloc((void**)&d_c, N*sizeof(float)));
gpuErrchk(cudaMemcpy(d_a, h_a, N*sizeof(float), cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(d_b, h_b, N*sizeof(float), cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(d_c, h_c, N*sizeof(float), cudaMemcpyHostToDevice));
/***********/
/* KERNEL0 */
/***********/
timerGPU.StartCounter();
kernel0 << <iDivUp(N, BLOCKSIZE), BLOCKSIZE >> >(d_a, d_b, d_c, N);
#ifdef DEBUG
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
#endif
// --- Remember: timing is in ms
printf("Number of operations = %f; GFlops = %f\n", (float)N*(float)N_ITERATIONS, (1.e-6)*((float)N*(float)N_ITERATIONS) / timerGPU.GetCounter());
gpuErrchk(cudaMemcpy(h_a_result_device, d_a, N*sizeof(float), cudaMemcpyDeviceToHost));
for (int i = 0; i<N; i++) if (h_a_result_device[i] != h_a_result_host[i]) { printf("Error at i=%i! Host = %f; Device = %f\n", i, h_a_result_host[i], h_a_result_device[i]); return 1; }
/***********/
/* KERNEL1 */
/***********/
gpuErrchk(cudaMemcpy(d_a, h_a, N*sizeof(float), cudaMemcpyHostToDevice));
timerGPU.StartCounter();
kernel1 << <iDivUp(N / 2, BLOCKSIZE), BLOCKSIZE >> >(d_a, d_b, d_c, N);
#ifdef DEBUG
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
#endif
// --- Remember: timing is in ms
printf("Number of operations = %f; GFlops = %f\n", (float)N*(float)N_ITERATIONS, (1.e-6)*((float)N*(float)N_ITERATIONS) / timerGPU.GetCounter());
gpuErrchk(cudaMemcpy(h_a_result_device, d_a, N*sizeof(float), cudaMemcpyDeviceToHost));
for (int i = 0; i<N; i++) if (h_a_result_device[i] != h_a_result_host[i]) { printf("Error at i=%i! Host = %f; Device = %f\n", i, h_a_result_host[i], h_a_result_device[i]); return 1; }
/***********/
/* KERNEL2 */
/***********/
gpuErrchk(cudaMemcpy(d_a, h_a, N*sizeof(float), cudaMemcpyHostToDevice));
timerGPU.StartCounter();
kernel2 << <iDivUp(N / 4, BLOCKSIZE), BLOCKSIZE >> >(d_a, d_b, d_c, N);
#ifdef DEBUG
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
#endif
// --- Remember: timing is in ms
printf("Number of operations = %f; GFlops = %f\n", (float)N*(float)N_ITERATIONS, (1.e-6)*((float)N*(float)N_ITERATIONS) / timerGPU.GetCounter());
gpuErrchk(cudaMemcpy(h_a_result_device, d_a, N*sizeof(float), cudaMemcpyDeviceToHost));
for (int i = 0; i<N; i++) if (h_a_result_device[i] != h_a_result_host[i]) { printf("Error at i=%i! Host = %f; Device = %f\n", i, h_a_result_host[i], h_a_result_device[i]); return 1; }
cudaDeviceReset();
return 0;
}