-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
72 lines (66 loc) · 2.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import os
import argparse
import logging
from common import data, fit
import mxnet as mx
if __name__ == '__main__':
# parse args
parser = argparse.ArgumentParser(description="training",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
fit.add_fit_args(parser)
data.add_data_args(parser)
data.add_data_aug_args(parser)
data.set_data_aug_level(parser, 1)
parser.set_defaults(
# network
network = 'resnet',
num_layers = 18,
# data
data_train = 'rec/img_train.rec',
data_val = 'rec/img_val.rec',
num_classes = 2,
image_shape = '3,224,224',
# train
batch_size = 32,
num_epochs = 10,
lr = 0.01,
lr_step_epochs = '6,8',
dtype = 'float32',
gpus = '0',
model_prefix = 'models/img_cls',
log = 'log/train.log'
)
args = parser.parse_args()
# load network
from importlib import import_module
net = import_module('symbols.'+args.network)
sym = net.get_symbol(**vars(args))
# check actual number of train_images
if os.path.exists(args.data_train.replace('.rec', '.idx')):
with open(args.data_train.replace('.rec', '.idx'), 'r') as f:
txt = f.readlines()
args.num_examples = len(txt)
# set up logger
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
fh = logging.FileHandler(args.log)
logger.addHandler(fh)
# train
fit.fit(args, sym, data.get_rec_iter)