-
Notifications
You must be signed in to change notification settings - Fork 821
/
actor.py
56 lines (46 loc) · 1.86 KB
/
actor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import parl
import numpy as np
from osim.env import L2M2019Env
from env_wrapper import FrameSkip, ActionScale, OfficialObs, FinalReward, FirstTarget
@parl.remote_class
class Actor(object):
def __init__(self,
difficulty,
vel_penalty_coeff,
muscle_penalty_coeff,
penalty_coeff,
only_first_target=False):
random_seed = np.random.randint(int(1e9))
env = L2M2019Env(
difficulty=difficulty, visualize=False, seed=random_seed)
max_timelimit = env.time_limit
env = FinalReward(
env,
max_timelimit=max_timelimit,
vel_penalty_coeff=vel_penalty_coeff,
muscle_penalty_coeff=muscle_penalty_coeff,
penalty_coeff=penalty_coeff)
if only_first_target:
assert difficulty == 3, "argument `only_first_target` is available only in `difficulty=3`."
env = FirstTarget(env)
env = FrameSkip(env)
env = ActionScale(env)
self.env = OfficialObs(env, max_timelimit=max_timelimit)
def reset(self):
observation = self.env.reset(project=False)
return observation
def step(self, action):
return self.env.step(action, project=False)