From 89cab57a2fde4ca66d31cb3badca3cab893fd997 Mon Sep 17 00:00:00 2001 From: fuwenguang Date: Thu, 10 Feb 2022 07:50:54 +0000 Subject: [PATCH] [MLU] add pool2d pytest --- .../tests/unittests/mlu/test_pool2d_op_mlu.py | 868 ++++++++++++++++++ 1 file changed, 868 insertions(+) create mode 100644 python/paddle/fluid/tests/unittests/mlu/test_pool2d_op_mlu.py diff --git a/python/paddle/fluid/tests/unittests/mlu/test_pool2d_op_mlu.py b/python/paddle/fluid/tests/unittests/mlu/test_pool2d_op_mlu.py new file mode 100644 index 0000000000000..2d9703117671c --- /dev/null +++ b/python/paddle/fluid/tests/unittests/mlu/test_pool2d_op_mlu.py @@ -0,0 +1,868 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function +from __future__ import division + +import unittest +import numpy as np + +import paddle +import paddle.fluid.core as core +import paddle.fluid as fluid +from paddle.fluid import Program, program_guard +import sys +sys.path.append('..') +from op_test import OpTest +from test_pool2d_op import pool2D_forward_naive, avg_pool2D_forward_naive, max_pool2D_forward_naive + + +class TestPool2D_Op_Mixin(object): + def setUp(self): + self.place = paddle.device.MLUPlace(0) + self.__class__.use_mlu = True + self.op_type = "pool2d" + self.init_data_type() + self.init_test_case() + self.padding_algorithm = "EXPLICIT" + self.init_paddings() + self.init_global_pool() + self.init_pool_type() + self.init_ceil_mode() + self.init_exclusive() + self.init_adaptive() + self.init_data_format() + self.init_shape() + + input = np.random.random(self.shape).astype(self.dtype) + output = pool2D_forward_naive( + input, self.ksize, self.strides, self.paddings, self.global_pool, + self.ceil_mode, self.exclusive, self.adaptive, self.data_format, + self.pool_type, self.padding_algorithm).astype(self.dtype) + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)} + + self.attrs = { + 'strides': self.strides, + 'paddings': self.paddings, + 'ksize': self.ksize, + 'pooling_type': self.pool_type, + 'global_pooling': self.global_pool, + 'ceil_mode': self.ceil_mode, + 'data_format': self.data_format, + 'exclusive': self.exclusive, + 'adaptive': self.adaptive, + "padding_algorithm": self.padding_algorithm, + } + + self.outputs = {'Out': output} + + def test_check_output(self): + self.check_output_with_place(self.place) + + def test_check_grad(self): + if self.dtype == np.float16: + return + + if self.pool_type != "max": + self.check_grad_with_place( + self.place, set(['X']), 'Out', max_relative_error=0.07) + + def init_data_format(self): + self.data_format = "NCHW" + + def init_shape(self): + self.shape = [2, 3, 5, 5] + + def init_test_case(self): + self.ksize = [3, 3] + self.strides = [1, 1] + + def init_paddings(self): + self.paddings = [0, 0] + self.padding_algorithm = "EXPLICIT" + + def init_data_type(self): + self.dtype = np.float32 + + def init_pool_type(self): + self.pool_type = "avg" + self.pool2D_forward_naive = avg_pool2D_forward_naive + + def init_global_pool(self): + self.global_pool = True + + def init_ceil_mode(self): + self.ceil_mode = False + + def init_exclusive(self): + self.exclusive = True + + # Not support adaptive pooling currently + def init_adaptive(self): + self.adaptive = False + + +class TestPool2D_Op(TestPool2D_Op_Mixin, OpTest): + pass + + +class TestCase1(TestPool2D_Op): + def init_test_case(self): + self.ksize = [3, 3] + self.strides = [1, 1] + + def init_paddings(self): + self.paddings = [0, 0] + + def init_pool_type(self): + self.pool_type = "avg" + self.pool2D_forward_naive = avg_pool2D_forward_naive + + def init_global_pool(self): + self.global_pool = False + + def init_shape(self): + self.shape = [2, 3, 7, 7] + + +class TestCase2(TestPool2D_Op): + def init_test_case(self): + self.ksize = [3, 3] + self.strides = [1, 1] + + def init_paddings(self): + self.paddings = [1, 1] + + def init_pool_type(self): + self.pool_type = "avg" + self.pool2D_forward_naive = avg_pool2D_forward_naive + + def init_global_pool(self): + self.global_pool = False + + def init_shape(self): + self.shape = [2, 3, 7, 7] + + +class TestCase3(TestPool2D_Op): + def init_pool_type(self): + self.pool_type = "max" + self.pool2D_forward_naive = max_pool2D_forward_naive + + +class TestCase4(TestCase1): + def init_pool_type(self): + self.pool_type = "max" + self.pool2D_forward_naive = max_pool2D_forward_naive + + +class TestCase5(TestCase2): + def init_pool_type(self): + self.pool_type = "max" + self.pool2D_forward_naive = max_pool2D_forward_naive + + +def create_test_fp16_class(parent, check_grad=True): + class TestFp16Case(parent): + def init_data_type(self): + self.dtype = np.float16 + + def test_check_output(self): + place = core.MLUPlace(0) + self.check_output_with_place(place, atol=1e-3) + + def test_check_grad(self): + place = core.MLUPlace(0) + if self.pool_type != "max" and check_grad: + self.check_grad_with_place( + place, set(['X']), 'Out', max_relative_error=0.07) + + cls_name = "{0}_{1}".format(parent.__name__, "Fp16Op") + TestFp16Case.__name__ = cls_name + globals()[cls_name] = TestFp16Case + + +create_test_fp16_class(TestPool2D_Op) +create_test_fp16_class(TestCase1, check_grad=False) +create_test_fp16_class(TestCase2) +create_test_fp16_class(TestCase3) +create_test_fp16_class(TestCase4) +create_test_fp16_class(TestCase5) + +#--------------------test pool2d use ceil mode-------------------- + + +def create_test_use_ceil_class(parent): + class TestPool2DUseCeilCase(parent): + def init_ceil_mode(self): + self.ceil_mode = True + + cls_name = "{0}_{1}".format(parent.__name__, "CeilModeCast") + TestPool2DUseCeilCase.__name__ = cls_name + globals()[cls_name] = TestPool2DUseCeilCase + + +create_test_use_ceil_class(TestCase1) +create_test_use_ceil_class(TestCase2) + + +class TestAvgInclude(TestCase2): + def init_exclusive(self): + self.exclusive = False + + +#-------test pool2d with asymmetric padding----- + + +class TestPool2D_AsyPadding(TestPool2D_Op): + def init_test_case(self): + self.ksize = [3, 3] + self.strides = [1, 1] + self.paddings = [1, 0, 1, 2] + + def init_shape(self): + self.shape = [2, 3, 5, 5] + + +class TestCase1_AsyPadding(TestCase1): + def init_test_case(self): + self.ksize = [3, 3] + self.strides = [1, 1] + self.paddings = [1, 0, 1, 0] + + def init_shape(self): + self.shape = [2, 3, 7, 7] + + +class TestCase2_AsyPadding(TestCase2): + def init_test_case(self): + self.ksize = [3, 3] + self.strides = [1, 1] + self.paddings = [1, 2, 1, 2] + + def init_shape(self): + self.shape = [2, 3, 7, 7] + + +class TestCase3_AsyPadding(TestCase3): + def init_test_case(self): + self.ksize = [3, 3] + self.strides = [1, 1] + self.paddings = [1, 0, 1, 2] + + def init_shape(self): + self.shape = [2, 3, 5, 5] + + +class TestCase4_AsyPadding(TestCase4): + def init_test_case(self): + self.ksize = [3, 3] + self.strides = [1, 1] + self.paddings = [1, 0, 1, 0] + + def init_shape(self): + self.shape = [2, 3, 7, 7] + + +class TestCase5_AsyPadding((TestCase5)): + def init_test_case(self): + self.ksize = [3, 3] + self.strides = [1, 1] + self.paddings = [2, 2, 1, 2] + + def init_shape(self): + self.shape = [2, 3, 7, 7] + + +create_test_use_ceil_class(TestCase1_AsyPadding) +create_test_use_ceil_class(TestCase2_AsyPadding) + + +class TestAvgInclude_AsyPadding(TestCase2): + def init_exclusive(self): + self.exclusive = False + + def init_test_case(self): + self.ksize = [3, 3] + self.strides = [1, 1] + self.paddings = [1, 2, 1, 2] + + def init_shape(self): + self.shape = [2, 3, 7, 7] + + +#----------- test channel_last -------------- +class TestPool2D_channel_last(TestPool2D_Op): + def init_data_format(self): + self.data_format = "NHWC" + + def init_shape(self): + self.shape = [2, 5, 5, 3] + + +class TestCase1_channel_last(TestCase1): + def init_data_format(self): + self.data_format = "NHWC" + + def init_shape(self): + self.shape = [2, 7, 7, 3] + + +class TestCase2_channel_last(TestCase2): + def init_data_format(self): + self.data_format = "NHWC" + + def init_shape(self): + self.shape = [2, 7, 7, 3] + + +class TestCase3_channel_last(TestCase3): + def init_data_format(self): + self.data_format = "NHWC" + + def init_shape(self): + self.shape = [2, 5, 5, 3] + + +class TestCase4_channel_last(TestCase4): + def init_data_format(self): + self.data_format = "NHWC" + + def init_shape(self): + self.shape = [2, 7, 7, 3] + + +class TestCase5_channel_last(TestCase5): + def init_data_format(self): + self.data_format = "NHWC" + + def init_shape(self): + self.shape = [2, 7, 7, 3] + + +create_test_use_ceil_class(TestCase1_channel_last) +create_test_use_ceil_class(TestCase2_channel_last) + + +class TestCase5_Max(TestCase2): + def init_pool_type(self): + self.pool_type = "max" + + def test_check_grad(self): + if self.dtype == np.float16: + return + place = core.MLUPlace(0) + if self.pool_type == "max": + self.check_grad_with_place( + place, set(['X']), 'Out', max_relative_error=1.00) + + +class TestCase5_channel_last_Max(TestCase5_Max): + def init_data_format(self): + self.data_format = "NHWC" + + def init_shape(self): + self.shape = [2, 7, 7, 3] + + +class TestAvgInclude_channel_last(TestCase2_channel_last): + def init_exclusive(self): + self.exclusive = False + + +class TestPool2D_AsyPadding_channel_last(TestPool2D_AsyPadding): + def init_data_format(self): + self.data_format = "NHWC" + + def init_shape(self): + self.shape = [2, 5, 5, 3] + + +class TestCase1_AsyPadding_channel_last(TestCase1_AsyPadding): + def init_data_format(self): + self.data_format = "NHWC" + + def init_shape(self): + self.shape = [2, 7, 7, 3] + + +class TestCase2_AsyPadding_channel_last(TestCase2_AsyPadding): + def init_data_format(self): + self.data_format = "NHWC" + + def init_shape(self): + self.shape = [2, 7, 7, 3] + + +class TestCase3_AsyPadding_channel_last(TestCase3_AsyPadding): + def init_data_format(self): + self.data_format = "NHWC" + + def init_shape(self): + self.shape = [2, 5, 5, 3] + + +class TestCase4_AsyPadding_channel_last(TestCase4_AsyPadding): + def init_data_format(self): + self.data_format = "NHWC" + + def init_shape(self): + self.shape = [2, 7, 7, 3] + + +class TestCase5_AsyPadding_channel_last(TestCase5_AsyPadding): + def init_data_format(self): + self.data_format = "NHWC" + + def init_shape(self): + self.shape = [2, 7, 7, 3] + + +create_test_use_ceil_class(TestCase1_AsyPadding_channel_last) +create_test_use_ceil_class(TestCase2_AsyPadding_channel_last) + + +class TestAvgInclude_AsyPadding_channel_last(TestAvgInclude_AsyPadding): + def init_data_format(self): + self.data_format = "NHWC" + + def init_shape(self): + self.shape = [2, 7, 7, 3] + + +# test paddings: SAME VALID + + +def create_test_padding_SAME_class(parent): + class TestPaddingSMAECase(parent): + def init_paddings(self): + self.paddings = [0, 0] + self.padding_algorithm = "SAME" + + cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp") + TestPaddingSMAECase.__name__ = cls_name + globals()[cls_name] = TestPaddingSMAECase + + +create_test_padding_SAME_class(TestPool2D_Op) +create_test_padding_SAME_class(TestCase1) +create_test_padding_SAME_class(TestCase2) +create_test_padding_SAME_class(TestCase3) +create_test_padding_SAME_class(TestCase4) +create_test_padding_SAME_class(TestCase5) + +create_test_padding_SAME_class(TestPool2D_channel_last) +create_test_padding_SAME_class(TestCase1_channel_last) +create_test_padding_SAME_class(TestCase2_channel_last) +create_test_padding_SAME_class(TestCase3_channel_last) +create_test_padding_SAME_class(TestCase4_channel_last) +create_test_padding_SAME_class(TestCase5_channel_last) + + +def create_test_padding_VALID_class(parent): + class TestPaddingVALIDCase(parent): + def init_paddings(self): + self.paddings = [1, 1] + self.padding_algorithm = "VALID" + + cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp") + TestPaddingVALIDCase.__name__ = cls_name + globals()[cls_name] = TestPaddingVALIDCase + + +create_test_padding_VALID_class(TestPool2D_Op) +create_test_padding_VALID_class(TestCase1) +create_test_padding_VALID_class(TestCase2) +create_test_padding_VALID_class(TestCase3) +create_test_padding_VALID_class(TestCase4) +create_test_padding_VALID_class(TestCase5) + +create_test_padding_VALID_class(TestPool2D_channel_last) +create_test_padding_VALID_class(TestCase1_channel_last) +create_test_padding_VALID_class(TestCase2_channel_last) +create_test_padding_VALID_class(TestCase3_channel_last) +create_test_padding_VALID_class(TestCase4_channel_last) +create_test_padding_VALID_class(TestCase5_channel_last) + + +class TestCase1_strides(TestCase1): + def init_test_case(self): + self.ksize = [3, 3] + self.strides = [1, 2] + + def init_shape(self): + self.shape = [2, 3, 4, 5] + + +create_test_padding_SAME_class(TestCase1_strides) + + +# ----- test API +class TestPool2DAPI(unittest.TestCase): + def test_api(self): + x_NHWC = np.random.random([2, 5, 5, 3]).astype("float32") + x_NCHW = np.random.random([2, 3, 5, 5]).astype("float32") + + input_NHWC = fluid.layers.data( + name="input_NHWC", + shape=[2, 5, 5, 3], + append_batch_size=False, + dtype="float32") + + input_NCHW = fluid.layers.data( + name="input_NCHW", + shape=[2, 3, 5, 5], + append_batch_size=False, + dtype="float32") + + input_NHWC_negetive = fluid.layers.data( + name="input_NHWC_negetive", + shape=[2, -1, 5, 3], + append_batch_size=False, + dtype="float32") + + input_NCHW_negetive = fluid.layers.data( + name="input_NCHW_negetive", + shape=[2, 3, -1, -1], + append_batch_size=False, + dtype="float32") + + ksize = [3, 3] + out_1 = fluid.layers.pool2d( + input=input_NHWC, + pool_size=ksize, + pool_type="max", + pool_padding=[1, 1], + data_format="NHWC") + + out_2 = fluid.layers.pool2d( + input=input_NHWC, + pool_size=ksize, + pool_type="avg", + pool_padding=[[0, 0], [1, 1], [1, 1], [0, 0]], + data_format="NHWC") + + out_3 = fluid.layers.pool2d( + input=input_NCHW, + pool_size=ksize, + pool_type="avg", + pool_padding=[[0, 0], [0, 0], [1, 1], [1, 1]], + data_format="NCHW") + + out_4 = fluid.layers.pool2d( + input=input_NCHW, + pool_size=ksize, + pool_type="avg", + pool_padding=[1, 2, 1, 0], + data_format="NCHW") + # test VALID + out_5 = fluid.layers.pool2d( + input=input_NCHW, + pool_size=ksize, + pool_type="avg", + pool_padding="VALID", + data_format="NCHW") + + out_6 = fluid.layers.pool2d( + input=input_NHWC, + pool_size=ksize, + pool_type="max", + pool_padding="VALID", + data_format="NHWC") + + # test SAME + out_7 = fluid.layers.pool2d( + input=input_NCHW, + pool_size=[4, 4], + pool_type="avg", + pool_padding="SAME", + data_format="NCHW") + + out_8 = fluid.layers.pool2d( + input=input_NHWC, + pool_size=[4, 4], + pool_type="max", + pool_padding="SAME", + data_format="NHWC") + + # test negetive + out_9 = fluid.layers.pool2d( + input=input_NHWC_negetive, + pool_size=ksize, + pool_type="avg", + pool_padding=[0, 0], + data_format="NHWC") + assert out_9.shape == (2, -1, 3, 3) + + out_10 = fluid.layers.pool2d( + input=input_NCHW_negetive, + pool_size=ksize, + pool_type="avg", + pool_padding=[0, 0], + data_format="NCHW") + assert out_10.shape == (2, 3, -1, -1) + + exe = fluid.Executor(place=fluid.MLUPlace(0)) + [res_1, res_2, res_3, res_4, res_5, res_6, res_7, res_8] = exe.run( + fluid.default_main_program(), + feed={ + "input_NHWC": x_NHWC, + "input_NCHW": x_NCHW, + "input_NHWC_negetive": x_NHWC, + "input_NCHW_negetive": x_NCHW + }, + fetch_list=[ + out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8 + ]) + + assert np.allclose( + res_1, + pool2D_forward_naive( + x=x_NHWC, + ksize=ksize, + pool_type="max", + strides=[1, 1], + paddings=[1, 1], + data_format="NHWC")) + + assert np.allclose( + res_2, + pool2D_forward_naive( + x=x_NHWC, + ksize=ksize, + pool_type="avg", + strides=[1, 1], + paddings=[1, 1, 1, 1], + data_format="NHWC")) + assert np.allclose( + res_3, + pool2D_forward_naive( + x=x_NCHW, + ksize=ksize, + pool_type="avg", + strides=[1, 1], + paddings=[1, 1, 1, 1], + data_format="NCHW"), + rtol=0.07, + atol=1e-05) + + assert np.allclose( + res_4, + pool2D_forward_naive( + x=x_NCHW, + ksize=ksize, + pool_type="avg", + strides=[1, 1], + paddings=[1, 2, 1, 0], + data_format="NCHW"), + rtol=0.07, + atol=1e-05) + + # VALID + assert np.allclose( + res_5, + pool2D_forward_naive( + x=x_NCHW, + ksize=ksize, + pool_type="avg", + strides=[1, 1], + paddings=[10, 20], # any ele is ok + padding_algorithm="VALID", + data_format="NCHW"), + rtol=0.07, + atol=1e-05) + assert np.allclose( + res_6, + pool2D_forward_naive( + x=x_NHWC, + ksize=ksize, + pool_type="max", + strides=[1, 1], + paddings=[10, 20], + padding_algorithm="VALID", + data_format="NHWC")) + # SAME + assert np.allclose( + res_7, + pool2D_forward_naive( + x=x_NCHW, + ksize=[4, 4], + pool_type="avg", + strides=[1, 1], + paddings=[10, 20], + padding_algorithm="SAME", + data_format="NCHW"), + rtol=0.07, + atol=1e-05) + + assert np.allclose( + res_8, + pool2D_forward_naive( + x=x_NHWC, + ksize=[4, 4], + pool_type="max", + strides=[1, 1], + paddings=[10, 20], + padding_algorithm="SAME", + data_format="NHWC")) + + +class TestPool2DAPI_Error(unittest.TestCase): + def test_api(self): + input_NHWC = fluid.layers.data( + name="input_NHWC", + shape=[2, 5, 5, 3], + append_batch_size=False, + dtype="float32") + ksize = [3, 3] + + # data_format value error + def run_2(): + out_2 = fluid.layers.pool2d( + input=input_NHWC, + pool_size=ksize, + pool_type="max", + pool_padding=[1, 1], + data_format="NHWCC") + + self.assertRaises(ValueError, run_2) + + # padding str value error + def run_3(): + out_3 = fluid.layers.pool2d( + input=input_NHWC, + pool_size=ksize, + pool_type="max", + pool_padding="VALIDSAME", + data_format="NHWC") + + self.assertRaises(ValueError, run_3) + + # padding str valid and ceil_mode value error + def run_4(): + out_4 = fluid.layers.pool2d( + input=input_NHWC, + pool_size=ksize, + pool_type="max", + pool_padding="VALID", + ceil_mode=True, + data_format="NHWC") + + self.assertRaises(ValueError, run_4) + + # padding with 8 ele. value error + def run_5(): + out_5 = fluid.layers.pool2d( + input=input_NHWC, + pool_size=ksize, + pool_type="max", + pool_padding=[[1, 1], [0, 0], [0, 0], [1, 1]], + data_format="NHWC") + + self.assertRaises(ValueError, run_5) + + +class TestDygraphPool2DAPIError(unittest.TestCase): + def test_errors(self): + with program_guard(Program(), Program()): + # the input of Pool2D must be Variable. + data1 = np.random.random((3, 32, 32, 5)).astype('float32') + pool2d = fluid.dygraph.Pool2D( + pool_size=2, + pool_type='max', + pool_stride=1, + global_pooling=False) + self.assertRaises(TypeError, pool2d, data1) + + # the input dtype of mlu Pool2D must be float16 or float32 + data2 = fluid.layers.data( + name='x1', shape=[3, 32, 32, 5], dtype="int32") + self.assertRaises(TypeError, pool2d, data2) + + def test_data_format_error(self): + with program_guard(Program(), Program()): + # the data_format must be 'NCHW' or 'NHWC' + data1 = np.random.random((3, 32, 32, 5)).astype('float32') + self.assertRaises( + ValueError, + fluid.dygraph.Pool2D, + pool_size=2, + pool_type='max', + pool_stride=1, + global_pooling=False, + data_format='NWHC') + + +class TestDygraphPool2DAPI(unittest.TestCase): + def test_nhwc(self): + with fluid.dygraph.guard(): + data = np.random.random((3, 32, 32, 5)).astype('float32') + x = fluid.dygraph.to_variable(data) + pool2d = fluid.dygraph.Pool2D( + pool_size=2, + pool_type='max', + pool_stride=1, + pool_padding=[0, 0], + global_pooling=False, + data_format='NHWC') + out1 = pool2d(x) + out2 = pool2D_forward_naive( + data, [2, 2], [1, 1], + paddings=[0, 0], + pool_type='max', + data_format='NHWC') + self.assertTrue(np.allclose(out1.numpy(), out2)) + + def test_lower_case(self): + with fluid.dygraph.guard(): + data = np.random.random((3, 32, 32, 5)).astype('float32') + x = fluid.dygraph.to_variable(data) + pool2d = fluid.dygraph.Pool2D( + pool_size=2, + pool_type='max', + pool_stride=1, + pool_padding=[0, 0], + global_pooling=False, + data_format='nhwc') + out1 = pool2d(x) + out2 = pool2D_forward_naive( + data, [2, 2], [1, 1], + paddings=[0, 0], + pool_type='max', + data_format='NHWC') + self.assertTrue(np.allclose(out1.numpy(), out2)) + + def test_upper_case(self): + with fluid.dygraph.guard(): + data = np.random.random((3, 32, 32, 5)).astype('float32') + x = fluid.dygraph.to_variable(data) + pool2d = fluid.dygraph.Pool2D( + pool_size=2, + pool_type='MAX', + pool_stride=1, + pool_padding=[0, 0], + global_pooling=False, + data_format='nhwc') + out1 = pool2d(x) + out2 = pool2D_forward_naive( + data, [2, 2], [1, 1], + paddings=[0, 0], + pool_type='max', + data_format='NHWC') + self.assertTrue(np.allclose(out1.numpy(), out2)) + + +if __name__ == '__main__': + paddle.enable_static() + unittest.main()