-
Notifications
You must be signed in to change notification settings - Fork 86
/
hid.cpp
811 lines (758 loc) · 25.6 KB
/
hid.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
/* USB EHCI Host for Teensy 3.6
* Copyright 2017 Paul Stoffregen ([email protected])
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <Arduino.h>
#include "USBHost_t36.h" // Read this header first for key info
// This HID driver claims a USB interface and parses its incoming
// data (reports). It doesn't actually use the data, but it allows
// drivers which inherit the USBHIDInput base class to claim the
// top level collections within the reports. Those drivers get
// callbacks with the arriving data full decoded to data/usage
// pairs.
#define print USBHost::print_
#define println USBHost::println_
void USBHIDParser::init()
{
contribute_Pipes(mypipes, sizeof(mypipes)/sizeof(Pipe_t));
contribute_Transfers(mytransfers, sizeof(mytransfers)/sizeof(Transfer_t));
contribute_String_Buffers(mystring_bufs, sizeof(mystring_bufs)/sizeof(strbuf_t));
driver_ready_for_device(this);
}
bool USBHIDParser::claim(Device_t *dev, int type, const uint8_t *descriptors, uint32_t len)
{
println("HIDParser claim this=", (uint32_t)this, HEX);
// only claim at interface level
if (type != 1) return false;
if (len < 9+9+7) return false;
// interface descriptor
uint32_t numendpoint = descriptors[4];
if (numendpoint < 1 || numendpoint > 2) return false;
if (descriptors[5] != 3) return false; // bInterfaceClass, 3 = HID
println(" bInterfaceNumber = ", descriptors[2]);
println(" bInterfaceClass = ", descriptors[5]);
println(" bInterfaceSubClass = ", descriptors[6]);
println(" bInterfaceProtocol = ", descriptors[7]);
print("HID Parser Claim: ");
print_hexbytes(descriptors, len);
// hid interface descriptor
uint32_t hidlen = descriptors[9];
if (hidlen < 9) return false;
if (descriptors[10] != 33) return false; // descriptor type, 33=HID
if (descriptors[14] < 1) return false; // must be at least 1 extra descriptor
if (hidlen != (uint32_t)(6 + descriptors[14] * 3)) return false; // must be correct size
if (9 + hidlen > len) return false;
uint32_t i=0;
while (1) {
if (descriptors[15 + i * 3] == 34) { // found HID report descriptor
descsize = descriptors[16 + i * 3] | (descriptors[17 + i * 3] << 8);
println("report descriptor size = ", descsize);
break;
}
i++;
if (i >= descriptors[14]) return false;
}
if (descsize > _big_buffer_size) return false; // can't fit the report descriptor
// endpoint descriptor(s)
uint32_t offset = 9 + hidlen;
if (len < offset + numendpoint * 7) return false; // not enough data
if (numendpoint == 1) {
println("Single endpoint HID:");
if (descriptors[offset] != 7) return false;
if (descriptors[offset+1] != 5) return false; // endpoint descriptor
if (descriptors[offset+3] != 3) return false; // must be interrupt type
uint32_t endpoint = descriptors[offset+2];
uint32_t size = descriptors[offset+4] | (descriptors[offset+5] << 8);
uint32_t interval = descriptors[offset+6];
println(" endpoint = ", endpoint, HEX);
println(" size = ", size);
println(" interval = ", interval);
if ((endpoint & 0x0F) == 0) return false;
if ((endpoint & 0xF0) != 0x80) return false; // must be IN direction
in_pipe = new_Pipe(dev, 3, endpoint & 0x0F, 1, size, interval);
out_pipe = NULL;
in_size = size;
} else {
println("Two endpoint HID:");
if (descriptors[offset] != 7) return false;
if (descriptors[offset+1] != 5) return false; // endpoint descriptor
if (descriptors[offset+3] != 3) return false; // must be interrupt type
uint32_t endpoint1 = descriptors[offset+2];
uint32_t size1 = descriptors[offset+4] | (descriptors[offset+5] << 8);
uint32_t interval1 = descriptors[offset+6];
println(" endpoint = ", endpoint1, HEX);
println(" size = ", size1);
println(" interval = ", interval1);
if ((endpoint1 & 0x0F) == 0) return false;
if (descriptors[offset+7] != 7) return false;
if (descriptors[offset+8] != 5) return false; // endpoint descriptor
if (descriptors[offset+10] != 3) return false; // must be interrupt type
uint32_t endpoint2 = descriptors[offset+9];
uint32_t size2 = descriptors[offset+11] | (descriptors[offset+12] << 8);
uint32_t interval2 = descriptors[offset+13];
println(" endpoint = ", endpoint2, HEX);
println(" size = ", size2);
println(" interval = ", interval2);
if ((endpoint2 & 0x0F) == 0) return false;
if (((endpoint1 & 0xF0) == 0x80) && ((endpoint2 & 0xF0) == 0)) {
// first endpoint is IN, second endpoint is OUT
in_pipe = new_Pipe(dev, 3, endpoint1 & 0x0F, 1, size1, interval1);
out_pipe = new_Pipe(dev, 3, endpoint2, 0, size2, interval2);
in_size = size1;
out_size = size2;
} else if (((endpoint1 & 0xF0) == 0) && ((endpoint2 & 0xF0) == 0x80)) {
// first endpoint is OUT, second endpoint is IN
in_pipe = new_Pipe(dev, 3, endpoint2 & 0x0F, 1, size2, interval2);
out_pipe = new_Pipe(dev, 3, endpoint1, 0, size1, interval1);
in_size = size2;
out_size = size1;
} else {
return false;
}
out_pipe->callback_function = out_callback;
}
in_pipe->callback_function = in_callback;
for (uint32_t i=0; i < TOPUSAGE_LIST_LEN; i++) {
//topusage_list[i] = 0;
topusage_drivers[i] = NULL;
}
// request the HID report descriptor
bInterfaceNumber = descriptors[2]; // save away the interface number;
bInterfaceSubClass = descriptors[6]; // likewise sub type and protocol.
bInterfaceProtocol = descriptors[7];
mk_setup(setup, 0x81, 6, 0x2200, descriptors[2], descsize); // get report desc
queue_Control_Transfer(dev, &setup, _bigBuffer, this);
return true;
}
void USBHIDParser::control(const Transfer_t *transfer)
{
println("control callback (hid)");
print_hexbytes(transfer->buffer, transfer->length);
if (topusage_drivers[0]) {
if (topusage_drivers[0]->hid_process_control(transfer)) {
return; // the called function can tell us they processed it.
}
}
// To decode hex dump to human readable HID report summary:
// http://eleccelerator.com/usbdescreqparser/
uint32_t mesg = transfer->setup.word1;
println(" mesg = ", mesg, HEX);
if (mesg == 0x22000681 && transfer->length == descsize) { // HID report descriptor
println(" got report descriptor");
parse();
// We need to setup the buffer pointers.
if (_rx1 == nullptr) {
_rx1 = _bigBufferEnd - in_size;
_rx2 = _rx1 - in_size;
_bigBufferEnd = _rx2;
}
queue_Data_Transfer(in_pipe, _rx1, in_size, this);
if (_rx2) queue_Data_Transfer(in_pipe, _rx2, in_size, this);
if (_rx3) queue_Data_Transfer(in_pipe, _rx3, in_size, this);
if (_rx4) queue_Data_Transfer(in_pipe, _rx4, in_size, this);
if (device->idVendor == 0x054C &&
((device->idProduct == 0x0268) || (device->idProduct == 0x042F)/* || (device->idProduct == 0x03D5)*/)) {
println("send special PS3 feature command");
mk_setup(setup, 0x21, 9, 0x03F4, 0, 4); // ps3 tell to send report 1?
static uint8_t ps3_feature_F4_report[] = {0x42, 0x0c, 0x00, 0x00};
queue_Control_Transfer(device, &setup, ps3_feature_F4_report, this);
}
}
}
void USBHIDParser::in_callback(const Transfer_t *transfer)
{
if (transfer->driver) {
((USBHIDParser*)(transfer->driver))->in_data(transfer);
}
}
void USBHIDParser::out_callback(const Transfer_t *transfer)
{
//println("USBHIDParser:: out_callback (static)");
if (transfer->driver) {
((USBHIDParser*)(transfer->driver))->out_data(transfer);
}
}
// When the device goes away, we need to call disconnect_collection()
// for all drivers which claimed a top level collection
void USBHIDParser::disconnect()
{
for (uint32_t i=0; i < TOPUSAGE_LIST_LEN; i++) {
USBHIDInput *driver = topusage_drivers[i];
if (driver) {
driver->disconnect_collection(device);
topusage_drivers[i] = NULL;
}
}
}
// Called when the HID device sends a report
void USBHIDParser::in_data(const Transfer_t *transfer)
{
/*USBHDBGSerial.printf("HID: ");
uint8_t *pb = (uint8_t*)transfer->buffer;
for (uint8_t i = 0; i < transfer->length; i++) {
USBHDBGSerial.printf("%02x ",pb[i]);
}
USBHDBGSerial.printf("\n"); */
/*
print("HID: ");
print(use_report_id);
print(" - ");
print_hexbytes(transfer->buffer, transfer->length);
*/
const uint8_t *buf = (const uint8_t *)transfer->buffer;
uint32_t len = transfer->length;
// See if the first top report wishes to bypass the
// parse...
if (!(topusage_drivers[0] && topusage_drivers[0]->hid_process_in_data(transfer))) {
if (use_report_id == false) {
parse(0x0100, buf, len);
} else {
if (len > 1) {
parse(0x0100 | buf[0], buf + 1, len - 1);
}
}
}
#if defined(__IMXRT1062__) // Teensy 4.x
if ((uint32_t)buf >= 0x20200000u) arm_dcache_flush_delete((void*)buf, in_size);
#endif
queue_Data_Transfer(in_pipe, (void*)buf, in_size, this);
}
void USBHIDParser::out_data(const Transfer_t *transfer)
{
//Serial.printf(">>>USBHIDParser::out_data\n");
println("USBHIDParser:out_data called (instance)");
// A packet completed. lets mark it as done and call back
// to top reports handler. We unmark our checkmark to
// handle case where they may want to queue up another one.
uint8_t mask = 1;
const uint8_t *buffer = (const uint8_t *)transfer->buffer;
for(uint8_t i = 0; i < 4; i++) {
if (buffer == _tx[i]) {
_tx_state &= ~mask;
break;
}
mask <<= 1;
}
if (topusage_drivers[0]) {
topusage_drivers[0]->hid_process_out_data(transfer);
}
}
void USBHIDParser::timer_event(USBDriverTimer *whichTimer)
{
if (topusage_drivers[0]) {
topusage_drivers[0]->hid_timer_event(whichTimer);
}
}
bool USBHIDParser::sendPacket(const uint8_t *buffer, int cb) {
if (!out_size || !out_pipe) return false;
if (!_tx[0]) {
// Was not init before, for now lets put it at end of descriptor
// TODO: should verify that either don't exceed overlap descsize
// Or that we have taken over this device
_tx[0] = _bigBufferEnd - out_size;
_tx[1] = _tx[0] - out_size;
_bigBufferEnd = _tx[1];
_tx_mask = 3;
}
if ((_tx_state & _tx_mask) == _tx_mask) return false; // both transmit buffers are full
if (cb == -1)
cb = out_size;
uint8_t mask = 0x1;
uint8_t *p = _tx[0];
for (uint8_t i = 0; i < 4; i++ ) {
if ((mask & _tx_mask ) == 0) return false; // none found
if ((mask & _tx_state) == 0) {
_tx_state |= mask;
p = _tx[i];
break;
}
mask <<=1;
}
// copy the users data into our out going buffer
memcpy(p, buffer, cb);
#if defined(__IMXRT1062__) // Teensy 4.x
if ((uint32_t)p >= 0x20200000u) arm_dcache_flush_delete(p, cb);
#endif
println("USBHIDParser Send packet");
print_hexbytes(buffer, cb);
bool fReturn = queue_Data_Transfer(out_pipe, p, cb, this);
println(" Queue_data transfer returned:", fReturn, DEC);
return fReturn;
}
void USBHIDParser::setTXBuffers(uint8_t *buffer1, uint8_t *buffer2, uint8_t cb,
uint8_t *buffer3, uint8_t* buffer4)
{
uint8_t index = 0;
if (buffer1) _tx[index++] = buffer1;
if (buffer2) _tx[index++] = buffer2;
if (buffer3) _tx[index++] = buffer3;
if (buffer4) _tx[index++] = buffer4;
_tx_mask = (1 << index) - 1; // 2 by default 1<< 2 =4 -1 = 3...
}
void USBHIDParser::setRXBuffers(uint8_t *buffer1, uint8_t *buffer2, uint8_t cb,
uint8_t *buffer3, uint8_t* buffer4)
{
_rx1 = buffer1;
_rx2 = buffer2;
_rx3 = buffer3;
_rx4 = buffer4;
#if defined(__IMXRT1062__) // Teensy 4.x
if ((uint32_t)_rx1 >= 0x20200000u) arm_dcache_flush_delete(_rx1, in_size);
if ((uint32_t)_rx2 >= 0x20200000u) arm_dcache_flush_delete(_rx2, in_size);
if ((uint32_t)_rx3 >= 0x20200000u) arm_dcache_flush_delete(_rx3, in_size);
if ((uint32_t)_rx4 >= 0x20200000u) arm_dcache_flush_delete(_rx4, in_size);
#endif
}
bool USBHIDParser::sendControlPacket(uint32_t bmRequestType, uint32_t bRequest,
uint32_t wValue, uint32_t wIndex, uint32_t wLength, void *buf)
{
// Use setup structure to build packet
//USBHDBGSerial.printf(">>> SendControlPacket: %x %x %x %x %d", bmRequestType, bRequest, wValue, wIndex, wLength);
mk_setup(setup, bmRequestType, bRequest, wValue, wIndex, wLength); // ps3 tell to send report 1?
bool fReturn = queue_Control_Transfer(device, &setup, buf, this);
//USBHDBGSerial.printf(" return: %u\n", fReturn);
return fReturn;
}
// This no-inputs parse is meant to be used when we first get the
// HID report descriptor. It finds all the top level collections
// and allows drivers to claim them. This is always where we
// learn whether the reports will or will not use a Report ID byte.
void USBHIDParser::parse()
{
const uint8_t *p = _bigBuffer;
const uint8_t *end = p + descsize;
uint16_t usage_page = 0;
uint16_t usage = 0;
uint8_t collection_level = 0;
uint8_t topusage_count = 0;
use_report_id = false;
while (p < end) {
uint8_t tag = *p;
if (tag == 0xFE) { // Long Item
p += *p + 3;
continue;
}
uint32_t val = 0;
switch (tag & 0x03) { // Short Item data
case 0: val = 0;
p++;
break;
case 1: val = p[1];
p += 2;
break;
case 2: val = p[1] | (p[2] << 8);
p += 3;
break;
case 3: val = p[1] | (p[2] << 8) | (p[3] << 16) | (p[4] << 24);
p += 5;
break;
}
if (p > end) break;
switch (tag & 0xFC) {
case 0x84: // Report ID (global)
use_report_id = true;
break;
case 0x04: // Usage Page (global)
usage_page = val;
break;
case 0x08: // Usage (local)
usage = val;
break;
case 0xA0: // Collection
if (collection_level == 0 && topusage_count < TOPUSAGE_LIST_LEN) {
uint32_t topusage = ((uint32_t)usage_page << 16) | usage;
println("Found top level collection ", topusage, HEX);
//topusage_list[topusage_count] = topusage;
topusage_drivers[topusage_count] = find_driver(topusage);
topusage_count++;
}
collection_level++;
usage = 0;
break;
case 0xC0: // End Collection
if (collection_level > 0) {
collection_level--;
}
case 0x80: // Input
case 0x90: // Output
case 0xB0: // Feature
usage = 0;
break;
}
}
while (topusage_count < TOPUSAGE_LIST_LEN) {
//topusage_list[topusage_count] = 0;
topusage_drivers[topusage_count] = NULL;
topusage_count++;
}
}
// This is a list of all the drivers inherited from the USBHIDInput class.
// Unlike the list of USBDriver (managed in enumeration.cpp), drivers stay
// on this list even when they have claimed a top level collection.
USBHIDInput * USBHIDParser::available_hid_drivers_list = NULL;
void USBHIDParser::driver_ready_for_hid_collection(USBHIDInput *driver)
{
driver->next = NULL;
if (available_hid_drivers_list == NULL) {
available_hid_drivers_list = driver;
} else {
USBHIDInput *last = available_hid_drivers_list;
while (last->next) last = last->next;
last->next = driver;
}
}
// When a new top level collection is found, this function asks drivers
// if they wish to claim it. The driver taking ownership of the
// collection is returned, or NULL if no driver wants it.
USBHIDInput * USBHIDParser::find_driver(uint32_t topusage)
{
println("find_driver");
USBHIDInput *driver = available_hid_drivers_list;
hidclaim_t claim_type;
while (driver) {
println(" driver ", (uint32_t)driver, HEX);
if ((claim_type = driver->claim_collection(this, device, topusage)) != CLAIM_NO) {
if (claim_type == CLAIM_INTERFACE) hid_driver_claimed_control_ = true;
return driver;
}
driver = driver->next;
}
println("No Driver claimed topusage: ", topusage, HEX);
return NULL;
}
// Extract 1 to 32 bits from the data array, starting at bitindex.
static uint32_t bitfield(const uint8_t *data, uint32_t bitindex, uint32_t numbits)
{
uint32_t output = 0;
uint32_t bitcount = 0;
data += (bitindex >> 3);
uint32_t offset = bitindex & 7;
if (offset) {
output = (*data++) >> offset;
bitcount = 8 - offset;
}
while (bitcount < numbits) {
output |= (uint32_t)(*data++) << bitcount;
bitcount += 8;
}
if (bitcount > numbits && numbits < 32) {
output &= ((1 << numbits) - 1);
}
return output;
}
// convert a number with the specified number of bits from unsigned to signed,
// so the result is a proper 32 bit signed integer.
static int32_t signext(uint32_t num, uint32_t bitcount)
{
if (bitcount < 32 && bitcount > 0 && (num & (1 << (bitcount-1)))) {
num |= ~((1 << bitcount) - 1);
}
return (int32_t)num;
}
// convert a tag's value to a signed integer.
static int32_t signedval(uint32_t num, uint8_t tag)
{
tag &= 3;
if (tag == 1) return (int8_t)num;
if (tag == 2) return (int16_t)num;
return (int32_t)num;
}
// parse the report descriptor and use it to feed the fields of the report
// to the drivers which have claimed its top level collections
void USBHIDParser::parse(uint16_t type_and_report_id, const uint8_t *data, uint32_t len)
{
const uint8_t *p = _bigBuffer;
const uint8_t *end = p + descsize;
USBHIDInput *driver = NULL;
uint32_t topusage = 0;
uint8_t topusage_index = 0;
uint8_t collection_level = 0;
uint16_t usage[USAGE_LIST_LEN] = {0, 0};
uint8_t usage_count = 0;
uint8_t usage_min_max_count = 0;
uint8_t usage_min_max_mask = 0;
uint8_t report_id = 0;
uint16_t report_size = 0;
uint16_t report_count = 0;
uint16_t usage_page = 0;
uint32_t last_usage = 0;
int32_t logical_min = 0;
int32_t logical_max = 0;
uint32_t bitindex = 0;
while (p < end) {
uint8_t tag = *p;
if (tag == 0xFE) { // Long Item (unsupported)
p += p[1] + 3;
continue;
}
uint32_t val = 0;
switch (tag & 0x03) { // Short Item data
case 0: val = 0;
p++;
break;
case 1: val = p[1];
p += 2;
break;
case 2: val = p[1] | (p[2] << 8);
p += 3;
break;
case 3: val = p[1] | (p[2] << 8) | (p[3] << 16) | (p[4] << 24);
p += 5;
break;
}
if (p > end) break;
bool reset_local = false;
switch (tag & 0xFC) {
case 0x04: // Usage Page (global)
usage_page = val;
break;
case 0x14: // Logical Minimum (global)
logical_min = signedval(val, tag);
break;
case 0x24: // Logical Maximum (global)
logical_max = signedval(val, tag);
break;
case 0x74: // Report Size (global)
report_size = val;
break;
case 0x94: // Report Count (global)
report_count = val;
break;
case 0x84: // Report ID (global)
report_id = val;
break;
case 0x08: // Usage (local)
if (usage_count < USAGE_LIST_LEN) {
// Usages: 0 is reserved 0x1-0x1f is sort of reserved for top level things like
// 0x1 - Pointer - A collection... So lets try ignoring these
if (val > 0x1f) {
usage[usage_count++] = val;
}
}
break;
case 0x18: // Usage Minimum (local)
// Note: Found a report with multiple min/max
if (usage_count != 255) {
usage_count = 255;
usage_min_max_count = 0;
usage_min_max_mask = 0;
}
usage[usage_min_max_count * 2] = val;
usage_min_max_mask |= 1;
if (usage_min_max_mask == 3) {
usage_min_max_count++;
usage_min_max_mask = 0;
}
break;
case 0x28: // Usage Maximum (local)
if (usage_count != 255) {
usage_count = 255;
usage_min_max_count = 0;
usage_min_max_mask = 0;
}
usage[usage_min_max_count * 2 + 1] = val;
usage_min_max_mask |= 2;
if (usage_min_max_mask == 3) {
usage_min_max_count++;
usage_min_max_mask = 0;
}
break;
case 0xA0: // Collection
if (collection_level == 0) {
topusage = ((uint32_t)usage_page << 16) | usage[0];
driver = NULL;
if (topusage_index < TOPUSAGE_LIST_LEN) {
driver = topusage_drivers[topusage_index++];
}
}
// discard collection info if not top level, hopefully that's ok?
collection_level++;
reset_local = true;
break;
case 0xC0: // End Collection
if (collection_level > 0) {
collection_level--;
if (collection_level == 0 && driver != NULL) {
driver->hid_input_end();
driver = NULL;
}
}
reset_local = true;
break;
case 0x80: // Input
if (use_report_id && (report_id != (type_and_report_id & 0xFF))) {
// completely ignore and do not advance bitindex
// for descriptors of other report IDs
reset_local = true;
break;
}
if ((val & 1) || (driver == NULL)) {
// skip past constant fields or when no driver is listening
bitindex += report_count * report_size;
} else {
println("begin, usage=", topusage, HEX);
println(" type= ", val, HEX);
println(" min= ", logical_min);
println(" max= ", logical_max);
println(" reportcount=", report_count);
println(" usage count=", usage_count);
println(" usage min max count=", usage_min_max_count);
driver->hid_input_begin(topusage, val, logical_min, logical_max);
println("Input, total bits=", report_count * report_size);
if ((val & 2)) {
// ordinary variable format
uint32_t uindex = 0;
uint32_t uindex_max = 0xffff; // assume no MAX
bool uminmax = false;
uint8_t uminmax_index = 0;
if (usage_count > USAGE_LIST_LEN) {
// usage numbers by min/max, not from list
uindex = usage[0];
uindex_max = usage[1];
uminmax = true;
} else if ((report_count > 1) && (usage_count <= 1)) {
// Special cases: Either only one or no usages specified and there are more than one
// report counts .
if (usage_count == 1) {
uindex = usage[0];
} else {
// BUGBUG:: Not sure good place to start? maybe round up from last usage to next higher group up of 0x100?
uindex = (last_usage & 0xff00) + 0x100;
}
uminmax = true;
}
//USBHDBGSerial.printf("TU:%x US:%x %x %d %d: C:%d, %d, MM:%d, %x %x\n", topusage, usage_page, val, logical_min, logical_max,
// report_count, usage_count, uminmax, usage[0], usage[1]);
for (uint32_t i=0; i < report_count; i++) {
uint32_t u;
if (uminmax) {
u = uindex;
if (uindex < uindex_max) uindex++;
else if (uminmax_index < usage_min_max_count) {
uminmax_index++;
uindex = usage[uminmax_index * 2];
uindex_max = usage[uminmax_index * 2 + 1];
//USBHDBGSerial.printf("$$ next min/max pair: %u %u %u\n", uminmax_index, uindex, uindex_max);
}
} else {
u = usage[uindex++];
if (uindex >= USAGE_LIST_LEN-1) {
uindex = USAGE_LIST_LEN-1;
}
}
last_usage = u; // remember the last one we used...
u |= (uint32_t)usage_page << 16;
print(" usage = ", u, HEX);
uint32_t n = bitfield(data, bitindex, report_size);
if (logical_min >= 0) {
println(" data = ", n);
driver->hid_input_data(u, n);
} else {
int32_t sn = signext(n, report_size);
println(" sdata = ", sn);
driver->hid_input_data(u, sn);
}
bitindex += report_size;
}
} else {
// array format, each item is a usage number
// maybe act like the 2 case...
if (usage_min_max_count && (report_size == 1)) {
uint32_t uindex = usage[0];
uint32_t uindex_max = usage[1];
uint8_t uminmax_index = 0;
uint32_t u;
for (uint32_t i=0; i < report_count; i++) {
u = uindex;
if (uindex < uindex_max) uindex++;
else if (uminmax_index < usage_min_max_count) {
uminmax_index++;
uindex = usage[uminmax_index * 2];
uindex_max = usage[uminmax_index * 2 + 1];
//USBHDBGSerial.printf("$$ next min/max pair: %u %u %u\n", uminmax_index, uindex, uindex_max);
}
u |= (uint32_t)usage_page << 16;
uint32_t n = bitfield(data, bitindex, report_size);
if (logical_min >= 0) {
println(" data = ", n);
driver->hid_input_data(u, n);
} else {
int32_t sn = signext(n, report_size);
println(" sdata = ", sn);
driver->hid_input_data(u, sn);
}
bitindex += report_size;
}
} else {
for (uint32_t i=0; i < report_count; i++) {
uint32_t u = bitfield(data, bitindex, report_size);
int n = u;
if (n >= logical_min && n <= logical_max) {
u |= (uint32_t)usage_page << 16;
print(" usage = ", u, HEX);
println(" data = 1");
driver->hid_input_data(u, 1);
} else {
print (" usage =", u, HEX);
print(" out of range: ", logical_min, HEX);
println(" ", logical_max, HEX);
}
bitindex += report_size;
}
}
}
}
reset_local = true;
break;
case 0x90: // Output
// TODO.....
reset_local = true;
break;
case 0xB0: // Feature
// TODO.....
reset_local = true;
break;
case 0x34: // Physical Minimum (global)
case 0x44: // Physical Maximum (global)
case 0x54: // Unit Exponent (global)
case 0x64: // Unit (global)
break; // Ignore these commonly used tags. Hopefully not needed?
case 0xA4: // Push (yikes! Hope nobody really uses this?!)
case 0xB4: // Pop (yikes! Hope nobody really uses this?!)
case 0x38: // Designator Index (local)
case 0x48: // Designator Minimum (local)
case 0x58: // Designator Maximum (local)
case 0x78: // String Index (local)
case 0x88: // String Minimum (local)
case 0x98: // String Maximum (local)
case 0xA8: // Delimiter (local)
default:
println("Ruh Roh, unsupported tag, not a good thing Scoob ", tag, HEX);
break;
}
if (reset_local) {
usage_count = 0;
usage_min_max_count = 0;
usage[0] = 0;
usage[1] = 0;
}
}
}