forked from microsoft/CNTK
-
Notifications
You must be signed in to change notification settings - Fork 1
/
TrainResNet_ImageNet_Distributed.py
259 lines (213 loc) · 11.7 KB
/
TrainResNet_ImageNet_Distributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright (c) Microsoft. All rights reserved.
#
# Licensed under the MIT license. See LICENSE.md file in the project root
# for full license information.
# ==============================================================================
from __future__ import print_function
import os
import argparse
import cntk as C
import numpy as np
from cntk import input, cross_entropy_with_softmax, classification_error, Trainer, cntk_py
from cntk import data_parallel_distributed_learner, block_momentum_distributed_learner, Communicator
from cntk.learners import nesterov, learning_rate_schedule, momentum_schedule, UnitType
from cntk.device import try_set_default_device, gpu
from cntk.train.training_session import *
from cntk.debugging import *
from cntk.logging import *
from resnet_models import *
import cntk.io.transforms as xforms
# Paths relative to current python file.
abs_path = os.path.dirname(os.path.abspath(__file__))
data_path = os.path.join(abs_path, "..", "..", "..", "DataSets", "ImageNet")
model_path = os.path.join(abs_path, "Models")
# model dimensions
image_height = 224
image_width = 224
num_channels = 3 # RGB
num_classes = 1000
model_name = "ResNet_ImageNet.model"
def create_image_mb_source(map_file, mean_file, train, total_number_of_samples):
if not os.path.exists(map_file) or not os.path.exists(mean_file):
raise RuntimeError("File '%s' or '%s' does not exist." % (map_file, mean_file))
# transformation pipeline for the features has jitter/crop only when training
transforms = []
if train:
transforms += [
xforms.crop(crop_type='randomarea', area_ratio=(0.08, 1.0), aspect_ratio=(0.75, 1.3333), jitter_type='uniratio'), # train uses jitter
xforms.color(brightness_radius=0.4, contrast_radius=0.4, saturation_radius=0.4)
]
else:
transforms += [
C.io.transforms.crop(crop_type='center', side_ratio=0.875) # test has no jitter
]
transforms += [
xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='cubic'),
xforms.mean(mean_file)
]
# deserializer
return C.io.MinibatchSource(
C.io.ImageDeserializer(map_file, C.io.StreamDefs(
features=C.io.StreamDef(field='image', transforms=transforms), # 1st col in mapfile referred to as 'image'
labels=C.io.StreamDef(field='label', shape=num_classes))), # and second as 'label'
randomize=train,
max_samples=total_number_of_samples,
multithreaded_deserializer=True)
# Create network
def create_resnet_network(network_name, fp16):
# Input variables denoting the features and label data
input_var = C.input_variable((num_channels, image_height, image_width))
label_var = C.input_variable((num_classes))
dtype = np.float16 if fp16 else np.float32
if fp16:
graph_input = C.cast(input_var, dtype=np.float16)
graph_label = C.cast(label_var, dtype=np.float16)
else:
graph_input = input_var
graph_label = label_var
with C.default_options(dtype=dtype):
stride1x1 = (1, 1)
stride3x3 = (2, 2)
# create model, and configure learning parameters
if network_name == 'resnet18':
z = create_imagenet_model_basic(graph_input, [2, 1, 1, 2], num_classes)
elif network_name == 'resnet34':
z = create_imagenet_model_basic(graph_input, [3, 3, 5, 2], num_classes)
elif network_name == 'resnet50':
z = create_imagenet_model_bottleneck(graph_input, [2, 3, 5, 2], num_classes, stride1x1, stride3x3)
elif network_name == 'resnet101':
z = create_imagenet_model_bottleneck(graph_input, [2, 3, 22, 2], num_classes, stride1x1, stride3x3)
elif network_name == 'resnet152':
z = create_imagenet_model_bottleneck(graph_input, [2, 7, 35, 2], num_classes, stride1x1, stride3x3)
else:
return RuntimeError("Unknown model name!")
# loss and metric
ce = cross_entropy_with_softmax(z, graph_label)
errs = classification_error(z, graph_label, topN=1)
top5Errs = classification_error(z, graph_label, topN=5)
if fp16:
ce = C.cast(ce, dtype=np.float32)
errs = C.cast(errs, dtype=np.float32)
top5Errs = C.cast(top5Errs, dtype=np.float32)
return {
'name' : network_name,
'feature': input_var,
'label': label_var,
'ce' : ce,
'errs' : errs,
'top5Errs' : top5Errs,
'output': z
}
# Create trainer
def create_trainer(network, minibatch_size, epoch_size, num_quantization_bits, block_size, warm_up, progress_printer):
lr_per_mb = [1.0]*30 + [0.1]*30 + [0.01]*20 + [0.001]
l2_reg_weight = 0.0001
# adjust LR with minibatch size
if minibatch_size != 256:
for i in range(0, len(lr_per_mb)):
lr_per_mb[i] *= minibatch_size / 256
# Set learning parameters
lr_schedule = learning_rate_schedule(lr_per_mb, epoch_size=epoch_size, unit=UnitType.minibatch)
mm_schedule = momentum_schedule(0.9)
local_learner = nesterov(network['output'].parameters, lr_schedule, mm_schedule,
l2_regularization_weight=l2_reg_weight)
# learner object
if block_size != None and num_quantization_bits != 32:
raise RuntimeError("Block momentum cannot be used with quantization, please remove quantized_bits option.")
if block_size != None:
learner = block_momentum_distributed_learner(local_learner, block_size=block_size)
else:
learner = data_parallel_distributed_learner(local_learner, num_quantization_bits=num_quantization_bits, distributed_after=warm_up)
return Trainer(network['output'], (network['ce'], network['errs']), learner, progress_printer)
# Train and test
def train_and_test(network, trainer, train_source, test_source, minibatch_size, epoch_size, restore=True, profiling=False):
# define mapping from intput streams to network inputs
input_map = {
network['feature']: train_source.streams.features,
network['label']: train_source.streams.labels
}
if profiling:
start_profiler(sync_gpu=True)
training_session(
trainer=trainer,
mb_source=train_source,
mb_size=minibatch_size,
model_inputs_to_streams=input_map,
progress_frequency=epoch_size,
checkpoint_config=CheckpointConfig(frequency=epoch_size, filename=os.path.join(model_path, model_name), restore=restore),
test_config=TestConfig(test_source, minibatch_size)
).train()
if profiling:
stop_profiler()
# Train and evaluate the network.
def resnet_imagenet(train_data, test_data, mean_data, network_name, epoch_size, num_quantization_bits=32, block_size=None, warm_up=0,
max_epochs=90, restore=True, log_to_file=None, num_mbs_per_log=100, gen_heartbeat=False, scale_up=False, profiling=False, fp16=False):
set_computation_network_trace_level(0)
# NOTE: scaling up minibatch_size increases sample throughput. In 8-GPU machine,
# ResNet110 samples-per-second is ~7x of single GPU, comparing to ~3x without scaling
# up. However, bigger minimatch size on the same number of samples means less updates,
# thus leads to higher training error. This is a trade-off of speed and accuracy
minibatch_size = 32 * (Communicator.num_workers() if scale_up else 1)
progress_printer = ProgressPrinter(
freq=num_mbs_per_log,
tag='Training',
log_to_file=log_to_file,
rank=Communicator.rank(),
gen_heartbeat=gen_heartbeat,
num_epochs=max_epochs)
network = create_resnet_network(network_name, fp16)
trainer = create_trainer(network, minibatch_size, epoch_size, num_quantization_bits, block_size, warm_up, progress_printer)
train_source = create_image_mb_source(train_data, mean_data, train=True, total_number_of_samples=max_epochs * epoch_size)
test_source = create_image_mb_source(test_data, mean_data, train=False, total_number_of_samples=C.io.FULL_DATA_SWEEP)
train_and_test(network, trainer, train_source, test_source, minibatch_size, epoch_size, restore, profiling)
if __name__=='__main__':
data_path = os.path.join(abs_path, "..", "..", "..", "DataSets", "ImageNet")
parser = argparse.ArgumentParser()
parser.add_argument('-n', '--network', help='network type, resnet18, 34, 50, 101, 152', required=False, default='resnet50')
parser.add_argument('-s', '--scale_up', help='scale up minibatch size with #workers for better parallelism', type=bool, required=False, default='True')
parser.add_argument('-datadir', '--datadir', help='Data directory where the ImageNet dataset is located', required=False, default=data_path)
parser.add_argument('-outputdir', '--outputdir', help='Output directory for checkpoints and models', required=False, default=None)
parser.add_argument('-logdir', '--logdir', help='Log file', required=False, default=None)
parser.add_argument('-e', '--epochs', help='Total number of epochs to train', type=int, required=False, default='90')
parser.add_argument('-es', '--epoch_size', help='Size of epoch in samples', type=int, required=False, default='1281167')
parser.add_argument('-q', '--quantized_bits', help='Number of quantized bits used for gradient aggregation', type=int, required=False, default='32')
parser.add_argument('-b', '--block_samples', type=int, help="Number of samples per block for block momentum (BM) distributed learner (if 0 BM learner is not used)", required=False, default=None)
parser.add_argument('-a', '--distributed_after', help='Number of samples to train with before running distributed', type=int, required=False, default='0')
parser.add_argument('-r', '--restart', help='Indicating whether to restart from scratch (instead of restart from checkpoint file by default)', action='store_true', default=False)
parser.add_argument('-device', '--device', type=int, help="Force to run the script on a specified device", required=False, default=None)
parser.add_argument('-profile', '--profile', help="Turn on profiling", action='store_true', default=False)
parser.add_argument('-fp16', '--fp16', help="use float16", action='store_true', default=False)
args = vars(parser.parse_args())
if args['outputdir'] != None:
model_path = args['outputdir'] + "/models"
if args['device'] != None:
try_set_default_device(gpu(args['device']))
if args['epoch_size'] is not None:
epoch_size = args['epoch_size']
data_path = args['datadir']
if not os.path.isdir(data_path):
raise RuntimeError("Directory %s does not exist" % data_path)
mean_data = os.path.join(abs_path, 'ImageNet1K_mean.xml')
train_data = os.path.join(data_path, 'train_map.txt')
test_data = os.path.join(data_path, 'val_map.txt')
num_quantization_bits = args['quantized_bits']
epochs = args['epochs']
warm_up = args['distributed_after']
network_name = args['network']
scale_up = bool(args['scale_up'])
# Create distributed trainer factory
print("Start training: quantize_bit = {}, epochs = {}, distributed_after = {}".format(num_quantization_bits, epochs, warm_up))
resnet_imagenet(train_data, test_data, mean_data,
network_name,
epoch_size,
num_quantization_bits,
block_size=args['block_samples'],
warm_up=args['distributed_after'],
max_epochs=epochs,
restore=not args['restart'],
scale_up=scale_up,
log_to_file=args['logdir'],
profiling=args['profile'],
fp16=args['fp16'])
# Must call MPI finalize when process exit without exceptions
Communicator.finalize()