forked from bojone/gan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mnist_gangp.py
84 lines (68 loc) · 3.04 KB
/
mnist_gangp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os
import numpy as np
from scipy import misc,ndimage
mnist = input_data.read_data_sets('./MNIST_data')
batch_size = 100
width,height = 28,28
mnist_dim = width*height
random_dim = 10
epochs = 1000000
def my_init(size):
return tf.random_uniform(size, -0.05, 0.05)
D_W1 = tf.Variable(my_init([mnist_dim, 128]))
D_b1 = tf.Variable(tf.zeros([128]))
D_W2 = tf.Variable(my_init([128, 32]))
D_b2 = tf.Variable(tf.zeros([32]))
D_W3 = tf.Variable(my_init([32, 1]))
D_b3 = tf.Variable(tf.zeros([1]))
D_variables = [D_W1, D_b1, D_W2, D_b2, D_W3, D_b3]
G_W1 = tf.Variable(my_init([random_dim, 32]))
G_b1 = tf.Variable(tf.zeros([32]))
G_W2 = tf.Variable(my_init([32, 128]))
G_b2 = tf.Variable(tf.zeros([128]))
G_W3 = tf.Variable(my_init([128, mnist_dim]))
G_b3 = tf.Variable(tf.zeros([mnist_dim]))
G_variables = [G_W1, G_b1, G_W2, G_b2, G_W3, G_b3]
def D(X):
X = tf.nn.relu(tf.matmul(X, D_W1) + D_b1)
X = tf.nn.relu(tf.matmul(X, D_W2) + D_b2)
X = tf.matmul(X, D_W3) + D_b3
return X
def G(X):
X = tf.nn.relu(tf.matmul(X, G_W1) + G_b1)
X = tf.nn.relu(tf.matmul(X, G_W2) + G_b2)
X = tf.nn.sigmoid(tf.matmul(X, G_W3) + G_b3)
return X
real_X = tf.placeholder(tf.float32, shape=[batch_size, mnist_dim])
random_X = tf.placeholder(tf.float32, shape=[batch_size, random_dim])
random_Y = G(random_X)
eps = tf.random_uniform([batch_size, 1], minval=0., maxval=1.)
X_inter = eps*real_X + (1. - eps)*random_Y
grad = tf.gradients(D(X_inter), [X_inter])[0]
grad_norm = tf.sqrt(tf.reduce_sum((grad)**2, axis=1))
grad_pen = 10 * tf.reduce_mean(tf.nn.relu(grad_norm - 1.))
D_loss = tf.reduce_mean(D(real_X)) - tf.reduce_mean(D(random_Y)) + grad_pen
G_loss = tf.reduce_mean(D(random_Y))
D_solver = tf.train.AdamOptimizer(1e-4, 0.5).minimize(D_loss, var_list=D_variables)
G_solver = tf.train.AdamOptimizer(1e-4, 0.5).minimize(G_loss, var_list=G_variables)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
if not os.path.exists('out/'):
os.makedirs('out/')
for e in range(epochs):
for i in range(5):
real_batch_X,_ = mnist.train.next_batch(batch_size)
random_batch_X = np.random.uniform(-1, 1, (batch_size, random_dim))
_,D_loss_ = sess.run([D_solver,D_loss], feed_dict={real_X:real_batch_X, random_X:random_batch_X})
random_batch_X = np.random.uniform(-1, 1, (batch_size, random_dim))
_,G_loss_ = sess.run([G_solver,G_loss], feed_dict={random_X:random_batch_X})
if e % 1000 == 0:
print 'epoch %s, D_loss: %s, G_loss: %s'%(e, D_loss_, G_loss_)
n_rows = 6
check_imgs = sess.run(random_Y, feed_dict={random_X:random_batch_X}).reshape((batch_size, width, height))[:n_rows*n_rows]
imgs = np.ones((width*n_rows+5*n_rows+5, height*n_rows+5*n_rows+5))
for i in range(n_rows*n_rows):
imgs[5+5*(i%n_rows)+width*(i%n_rows):5+5*(i%n_rows)+width+width*(i%n_rows), 5+5*(i/n_rows)+height*(i/n_rows):5+5*(i/n_rows)+height+height*(i/n_rows)] = check_imgs[i]
misc.imsave('out/%s.png'%(e/1000), imgs)