forked from fishaudio/Bert-VITS2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hiyoriUI.py
735 lines (688 loc) · 29.9 KB
/
hiyoriUI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
"""
api服务,网页后端 多版本多模型 fastapi实现
原 server_fastapi
"""
import logging
import gc
import random
import librosa
import gradio
import numpy as np
import utils
from fastapi import FastAPI, Query, Request, File, UploadFile, Form
from fastapi.responses import Response, FileResponse
from fastapi.staticfiles import StaticFiles
from io import BytesIO
from scipy.io import wavfile
import uvicorn
import torch
import webbrowser
import psutil
import GPUtil
from typing import Dict, Optional, List, Set, Union, Tuple
import os
from tools.log import logger
from urllib.parse import unquote
from infer import infer, get_net_g, latest_version
import tools.translate as trans
from tools.sentence import split_by_language
from re_matching import cut_sent
from config import config
os.environ["TOKENIZERS_PARALLELISM"] = "false"
class Model:
"""模型封装类"""
def __init__(self, config_path: str, model_path: str, device: str, language: str):
self.config_path: str = os.path.normpath(config_path)
self.model_path: str = os.path.normpath(model_path)
self.device: str = device
self.language: str = language
self.hps = utils.get_hparams_from_file(config_path)
self.spk2id: Dict[str, int] = self.hps.data.spk2id # spk - id 映射字典
self.id2spk: Dict[int, str] = dict() # id - spk 映射字典
for speaker, speaker_id in self.hps.data.spk2id.items():
self.id2spk[speaker_id] = speaker
self.version: str = (
self.hps.version if hasattr(self.hps, "version") else latest_version
)
self.net_g = get_net_g(
model_path=model_path,
version=self.version,
device=device,
hps=self.hps,
)
def to_dict(self) -> Dict[str, any]:
return {
"config_path": self.config_path,
"model_path": self.model_path,
"device": self.device,
"language": self.language,
"spk2id": self.spk2id,
"id2spk": self.id2spk,
"version": self.version,
}
class Models:
def __init__(self):
self.models: Dict[int, Model] = dict()
self.num = 0
# spkInfo[角色名][模型id] = 角色id
self.spk_info: Dict[str, Dict[int, int]] = dict()
self.path2ids: Dict[str, Set[int]] = dict() # 路径指向的model的id
def init_model(
self, config_path: str, model_path: str, device: str, language: str
) -> int:
"""
初始化并添加一个模型
:param config_path: 模型config.json路径
:param model_path: 模型路径
:param device: 模型推理使用设备
:param language: 模型推理默认语言
"""
# 若文件不存在则不进行加载
if not os.path.isfile(model_path):
if model_path != "":
logger.warning(f"模型文件{model_path} 不存在,不进行初始化")
return self.num
if not os.path.isfile(config_path):
if config_path != "":
logger.warning(f"配置文件{config_path} 不存在,不进行初始化")
return self.num
# 若路径中的模型已存在,则不添加模型,若不存在,则进行初始化。
model_path = os.path.realpath(model_path)
if model_path not in self.path2ids.keys():
self.path2ids[model_path] = {self.num}
self.models[self.num] = Model(
config_path=config_path,
model_path=model_path,
device=device,
language=language,
)
logger.success(
f"添加模型{model_path},使用配置文件{os.path.realpath(config_path)}"
)
else:
# 获取一个指向id
m_id = next(iter(self.path2ids[model_path]))
self.models[self.num] = self.models[m_id]
self.path2ids[model_path].add(self.num)
logger.success("模型已存在,添加模型引用。")
# 添加角色信息
for speaker, speaker_id in self.models[self.num].spk2id.items():
if speaker not in self.spk_info.keys():
self.spk_info[speaker] = {self.num: speaker_id}
else:
self.spk_info[speaker][self.num] = speaker_id
# 修改计数
self.num += 1
return self.num - 1
def del_model(self, index: int) -> Optional[int]:
"""删除对应序号的模型,若不存在则返回None"""
if index not in self.models.keys():
return None
# 删除角色信息
for speaker, speaker_id in self.models[index].spk2id.items():
self.spk_info[speaker].pop(index)
if len(self.spk_info[speaker]) == 0:
# 若对应角色的所有模型都被删除,则清除该角色信息
self.spk_info.pop(speaker)
# 删除路径信息
model_path = os.path.realpath(self.models[index].model_path)
self.path2ids[model_path].remove(index)
if len(self.path2ids[model_path]) == 0:
self.path2ids.pop(model_path)
logger.success(f"删除模型{model_path}, id = {index}")
else:
logger.success(f"删除模型引用{model_path}, id = {index}")
# 删除模型
self.models.pop(index)
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
return index
def get_models(self):
"""获取所有模型"""
return self.models
if __name__ == "__main__":
app = FastAPI()
app.logger = logger
# 挂载静态文件
logger.info("开始挂载网页页面")
StaticDir: str = "./Web"
if not os.path.isdir(StaticDir):
logger.warning(
"缺少网页资源,无法开启网页页面,如有需要请在 https://github.com/jiangyuxiaoxiao/Bert-VITS2-UI 或者Bert-VITS对应版本的release页面下载"
)
else:
dirs = [fir.name for fir in os.scandir(StaticDir) if fir.is_dir()]
files = [fir.name for fir in os.scandir(StaticDir) if fir.is_dir()]
for dirName in dirs:
app.mount(
f"/{dirName}",
StaticFiles(directory=f"./{StaticDir}/{dirName}"),
name=dirName,
)
loaded_models = Models()
# 加载模型
logger.info("开始加载模型")
models_info = config.server_config.models
for model_info in models_info:
loaded_models.init_model(
config_path=model_info["config"],
model_path=model_info["model"],
device=model_info["device"],
language=model_info["language"],
)
@app.get("/")
async def index():
return FileResponse("./Web/index.html")
async def _voice(
text: str,
model_id: int,
speaker_name: str,
speaker_id: int,
sdp_ratio: float,
noise: float,
noisew: float,
length: float,
language: str,
auto_translate: bool,
auto_split: bool,
emotion: Optional[Union[int, str]] = None,
reference_audio=None,
style_text: Optional[str] = None,
style_weight: float = 0.7,
) -> Union[Response, Dict[str, any]]:
"""TTS实现函数"""
# 检查
# 检查模型是否存在
if model_id not in loaded_models.models.keys():
logger.error(f"/voice 请求错误:模型model_id={model_id}未加载")
return {"status": 10, "detail": f"模型model_id={model_id}未加载"}
# 检查是否提供speaker
if speaker_name is None and speaker_id is None:
logger.error("/voice 请求错误:推理请求未提供speaker_name或speaker_id")
return {"status": 11, "detail": "请提供speaker_name或speaker_id"}
elif speaker_name is None:
# 检查speaker_id是否存在
if speaker_id not in loaded_models.models[model_id].id2spk.keys():
logger.error(f"/voice 请求错误:角色speaker_id={speaker_id}不存在")
return {"status": 12, "detail": f"角色speaker_id={speaker_id}不存在"}
speaker_name = loaded_models.models[model_id].id2spk[speaker_id]
# 检查speaker_name是否存在
if speaker_name not in loaded_models.models[model_id].spk2id.keys():
logger.error(f"/voice 请求错误:角色speaker_name={speaker_name}不存在")
return {"status": 13, "detail": f"角色speaker_name={speaker_name}不存在"}
# 未传入则使用默认语言
if language is None:
language = loaded_models.models[model_id].language
# 翻译会破坏mix结构,auto也会变得无意义。不要在这两个模式下使用
if auto_translate:
if language == "auto" or language == "mix":
logger.error(
f"/voice 请求错误:请勿同时使用language = {language}与auto_translate模式"
)
return {
"status": 20,
"detail": f"请勿同时使用language = {language}与auto_translate模式",
}
text = trans.translate(Sentence=text, to_Language=language.lower())
if reference_audio is not None:
ref_audio = BytesIO(await reference_audio.read())
# 2.2 适配
if loaded_models.models[model_id].version == "2.2":
ref_audio, _ = librosa.load(ref_audio, 48000)
else:
ref_audio = reference_audio
# 改动:增加使用 || 对文本进行主动切分
# 切分优先级: || → auto/mix → auto_split
text2 = text.replace("\n", "").lstrip()
texts: List[str] = text2.split("||")
# 对于mix和auto的说明:出于版本兼容性的考虑,暂时无法使用multilang的方式进行推理
if language == "MIX":
text_language_speakers: List[Tuple[str, str, str]] = []
for _text in texts:
speaker_pieces = _text.split("[") # 按说话人分割多块
for speaker_piece in speaker_pieces:
if speaker_piece == "":
continue
speaker_piece2 = speaker_piece.split("]")
if len(speaker_piece2) != 2:
return {
"status": 21,
"detail": "MIX语法错误",
}
speaker = speaker_piece2[0].strip()
lang_pieces = speaker_piece2[1].split("<")
for lang_piece in lang_pieces:
if lang_piece == "":
continue
lang_piece2 = lang_piece.split(">")
if len(lang_piece2) != 2:
return {
"status": 21,
"detail": "MIX语法错误",
}
lang = lang_piece2[0].strip()
if lang.upper() not in ["ZH", "EN", "JP"]:
return {
"status": 21,
"detail": "MIX语法错误",
}
t = lang_piece2[1]
text_language_speakers.append((t, lang.upper(), speaker))
elif language == "AUTO":
text_language_speakers: List[Tuple[str, str, str]] = [
(final_text, language.upper().replace("JA", "JP"), speaker_name)
for sub_list in [
split_by_language(_text, target_languages=["zh", "ja", "en"])
for _text in texts
if _text != ""
]
for final_text, language in sub_list
if final_text != ""
]
else:
text_language_speakers: List[Tuple[str, str, str]] = [
(_text, language, speaker_name) for _text in texts if _text != ""
]
if auto_split:
text_language_speakers: List[Tuple[str, str, str]] = [
(final_text, lang, speaker)
for _text, lang, speaker in text_language_speakers
for final_text in cut_sent(_text)
]
audios = []
with torch.no_grad():
for _text, lang, speaker in text_language_speakers:
audios.append(
infer(
text=_text,
sdp_ratio=sdp_ratio,
noise_scale=noise,
noise_scale_w=noisew,
length_scale=length,
sid=speaker,
language=lang,
hps=loaded_models.models[model_id].hps,
net_g=loaded_models.models[model_id].net_g,
device=loaded_models.models[model_id].device,
emotion=emotion,
reference_audio=ref_audio,
style_text=style_text,
style_weight=style_weight,
)
)
# audios.append(np.zeros(int(44100 * 0.2)))
# audios.pop()
audio = np.concatenate(audios)
audio = gradio.processing_utils.convert_to_16_bit_wav(audio)
with BytesIO() as wavContent:
wavfile.write(
wavContent, loaded_models.models[model_id].hps.data.sampling_rate, audio
)
response = Response(content=wavContent.getvalue(), media_type="audio/wav")
return response
@app.post("/voice")
async def voice(
request: Request, # fastapi自动注入
text: str = Form(...),
model_id: int = Query(..., description="模型ID"), # 模型序号
speaker_name: str = Query(
None, description="说话人名"
), # speaker_name与 speaker_id二者选其一
speaker_id: int = Query(None, description="说话人id,与speaker_name二选一"),
sdp_ratio: float = Query(0.2, description="SDP/DP混合比"),
noise: float = Query(0.2, description="感情"),
noisew: float = Query(0.9, description="音素长度"),
length: float = Query(1, description="语速"),
language: str = Query(None, description="语言"), # 若不指定使用语言则使用默认值
auto_translate: bool = Query(False, description="自动翻译"),
auto_split: bool = Query(False, description="自动切分"),
emotion: Optional[Union[int, str]] = Query(None, description="emo"),
reference_audio: UploadFile = File(None),
style_text: Optional[str] = Form(None, description="风格文本"),
style_weight: float = Query(0.7, description="风格权重"),
):
"""语音接口,若需要上传参考音频请仅使用post请求"""
logger.info(
f"{request.client.host}:{request.client.port}/voice { unquote(str(request.query_params) )} text={text}"
)
return await _voice(
text=text,
model_id=model_id,
speaker_name=speaker_name,
speaker_id=speaker_id,
sdp_ratio=sdp_ratio,
noise=noise,
noisew=noisew,
length=length,
language=language,
auto_translate=auto_translate,
auto_split=auto_split,
emotion=emotion,
reference_audio=reference_audio,
style_text=style_text,
style_weight=style_weight,
)
@app.get("/voice")
async def voice(
request: Request, # fastapi自动注入
text: str = Query(..., description="输入文字"),
model_id: int = Query(..., description="模型ID"), # 模型序号
speaker_name: str = Query(
None, description="说话人名"
), # speaker_name与 speaker_id二者选其一
speaker_id: int = Query(None, description="说话人id,与speaker_name二选一"),
sdp_ratio: float = Query(0.2, description="SDP/DP混合比"),
noise: float = Query(0.2, description="感情"),
noisew: float = Query(0.9, description="音素长度"),
length: float = Query(1, description="语速"),
language: str = Query(None, description="语言"), # 若不指定使用语言则使用默认值
auto_translate: bool = Query(False, description="自动翻译"),
auto_split: bool = Query(False, description="自动切分"),
emotion: Optional[Union[int, str]] = Query(None, description="emo"),
style_text: Optional[str] = Query(None, description="风格文本"),
style_weight: float = Query(0.7, description="风格权重"),
):
"""语音接口,不建议使用"""
logger.info(
f"{request.client.host}:{request.client.port}/voice { unquote(str(request.query_params) )}"
)
return await _voice(
text=text,
model_id=model_id,
speaker_name=speaker_name,
speaker_id=speaker_id,
sdp_ratio=sdp_ratio,
noise=noise,
noisew=noisew,
length=length,
language=language,
auto_translate=auto_translate,
auto_split=auto_split,
emotion=emotion,
style_text=style_text,
style_weight=style_weight,
)
@app.get("/models/info")
def get_loaded_models_info(request: Request):
"""获取已加载模型信息"""
result: Dict[str, Dict] = dict()
for key, model in loaded_models.models.items():
result[str(key)] = model.to_dict()
return result
@app.get("/models/delete")
def delete_model(
request: Request, model_id: int = Query(..., description="删除模型id")
):
"""删除指定模型"""
logger.info(
f"{request.client.host}:{request.client.port}/models/delete { unquote(str(request.query_params) )}"
)
result = loaded_models.del_model(model_id)
if result is None:
logger.error(f"/models/delete 模型删除错误:模型{model_id}不存在,删除失败")
return {"status": 14, "detail": f"模型{model_id}不存在,删除失败"}
return {"status": 0, "detail": "删除成功"}
@app.get("/models/add")
def add_model(
request: Request,
model_path: str = Query(..., description="添加模型路径"),
config_path: str = Query(
None,
description="添加模型配置文件路径,不填则使用./config.json或../config.json",
),
device: str = Query("cuda", description="推理使用设备"),
language: str = Query("ZH", description="模型默认语言"),
):
"""添加指定模型:允许重复添加相同路径模型,且不重复占用内存"""
logger.info(
f"{request.client.host}:{request.client.port}/models/add { unquote(str(request.query_params) )}"
)
if config_path is None:
model_dir = os.path.dirname(model_path)
if os.path.isfile(os.path.join(model_dir, "config.json")):
config_path = os.path.join(model_dir, "config.json")
elif os.path.isfile(os.path.join(model_dir, "../config.json")):
config_path = os.path.join(model_dir, "../config.json")
else:
logger.error(
"/models/add 模型添加失败:未在模型所在目录以及上级目录找到config.json文件"
)
return {
"status": 15,
"detail": "查询未传入配置文件路径,同时默认路径./与../中不存在配置文件config.json。",
}
try:
model_id = loaded_models.init_model(
config_path=config_path,
model_path=model_path,
device=device,
language=language,
)
except Exception:
logging.exception("模型加载出错")
return {
"status": 16,
"detail": "模型加载出错,详细查看日志",
}
return {
"status": 0,
"detail": "模型添加成功",
"Data": {
"model_id": model_id,
"model_info": loaded_models.models[model_id].to_dict(),
},
}
def _get_all_models(root_dir: str = "Data", only_unloaded: bool = False):
"""从root_dir搜索获取所有可用模型"""
result: Dict[str, List[str]] = dict()
files = os.listdir(root_dir) + ["."]
for file in files:
if os.path.isdir(os.path.join(root_dir, file)):
sub_dir = os.path.join(root_dir, file)
# 搜索 "sub_dir" 、 "sub_dir/models" 两个路径
result[file] = list()
sub_files = os.listdir(sub_dir)
model_files = []
for sub_file in sub_files:
relpath = os.path.realpath(os.path.join(sub_dir, sub_file))
if only_unloaded and relpath in loaded_models.path2ids.keys():
continue
if sub_file.endswith(".pth") and sub_file.startswith("G_"):
if os.path.isfile(relpath):
model_files.append(sub_file)
# 对模型文件按步数排序
model_files = sorted(
model_files,
key=lambda pth: (
int(pth.lstrip("G_").rstrip(".pth"))
if pth.lstrip("G_").rstrip(".pth").isdigit()
else 10**10
),
)
result[file] = model_files
models_dir = os.path.join(sub_dir, "models")
model_files = []
if os.path.isdir(models_dir):
sub_files = os.listdir(models_dir)
for sub_file in sub_files:
relpath = os.path.realpath(os.path.join(models_dir, sub_file))
if only_unloaded and relpath in loaded_models.path2ids.keys():
continue
if sub_file.endswith(".pth") and sub_file.startswith("G_"):
if os.path.isfile(os.path.join(models_dir, sub_file)):
model_files.append(f"models/{sub_file}")
# 对模型文件按步数排序
model_files = sorted(
model_files,
key=lambda pth: (
int(pth.lstrip("models/G_").rstrip(".pth"))
if pth.lstrip("models/G_").rstrip(".pth").isdigit()
else 10**10
),
)
result[file] += model_files
if len(result[file]) == 0:
result.pop(file)
return result
@app.get("/models/get_unloaded")
def get_unloaded_models_info(
request: Request, root_dir: str = Query("Data", description="搜索根目录")
):
"""获取未加载模型"""
logger.info(
f"{request.client.host}:{request.client.port}/models/get_unloaded { unquote(str(request.query_params) )}"
)
return _get_all_models(root_dir, only_unloaded=True)
@app.get("/models/get_local")
def get_local_models_info(
request: Request, root_dir: str = Query("Data", description="搜索根目录")
):
"""获取全部本地模型"""
logger.info(
f"{request.client.host}:{request.client.port}/models/get_local { unquote(str(request.query_params) )}"
)
return _get_all_models(root_dir, only_unloaded=False)
@app.get("/status")
def get_status():
"""获取电脑运行状态"""
cpu_percent = psutil.cpu_percent(interval=1)
memory_info = psutil.virtual_memory()
memory_total = memory_info.total
memory_available = memory_info.available
memory_used = memory_info.used
memory_percent = memory_info.percent
gpuInfo = []
devices = ["cpu"]
for i in range(torch.cuda.device_count()):
devices.append(f"cuda:{i}")
gpus = GPUtil.getGPUs()
for gpu in gpus:
gpuInfo.append(
{
"gpu_id": gpu.id,
"gpu_load": gpu.load,
"gpu_memory": {
"total": gpu.memoryTotal,
"used": gpu.memoryUsed,
"free": gpu.memoryFree,
},
}
)
return {
"devices": devices,
"cpu_percent": cpu_percent,
"memory_total": memory_total,
"memory_available": memory_available,
"memory_used": memory_used,
"memory_percent": memory_percent,
"gpu": gpuInfo,
}
@app.get("/tools/translate")
def translate(
request: Request,
texts: str = Query(..., description="待翻译文本"),
to_language: str = Query(..., description="翻译目标语言"),
):
"""翻译"""
logger.info(
f"{request.client.host}:{request.client.port}/tools/translate { unquote(str(request.query_params) )}"
)
return {"texts": trans.translate(Sentence=texts, to_Language=to_language)}
all_examples: Dict[str, Dict[str, List]] = dict() # 存放示例
@app.get("/tools/random_example")
def random_example(
request: Request,
language: str = Query(None, description="指定语言,未指定则随机返回"),
root_dir: str = Query("Data", description="搜索根目录"),
):
"""
获取一个随机音频+文本,用于对比,音频会从本地目录随机选择。
"""
logger.info(
f"{request.client.host}:{request.client.port}/tools/random_example { unquote(str(request.query_params) )}"
)
global all_examples
# 数据初始化
if root_dir not in all_examples.keys():
all_examples[root_dir] = {"ZH": [], "JP": [], "EN": []}
examples = all_examples[root_dir]
# 从项目Data目录中搜索train/val.list
for root, directories, _files in os.walk(root_dir):
for file in _files:
if file in ["train.list", "val.list"]:
with open(
os.path.join(root, file), mode="r", encoding="utf-8"
) as f:
lines = f.readlines()
for line in lines:
data = line.split("|")
if len(data) != 7:
continue
# 音频存在 且语言为ZH/EN/JP
if os.path.isfile(data[0]) and data[2] in [
"ZH",
"JP",
"EN",
]:
examples[data[2]].append(
{
"text": data[3],
"audio": data[0],
"speaker": data[1],
}
)
examples = all_examples[root_dir]
if language is None:
if len(examples["ZH"]) + len(examples["JP"]) + len(examples["EN"]) == 0:
return {"status": 17, "detail": "没有加载任何示例数据"}
else:
# 随机选一个
rand_num = random.randint(
0,
len(examples["ZH"]) + len(examples["JP"]) + len(examples["EN"]) - 1,
)
# ZH
if rand_num < len(examples["ZH"]):
return {"status": 0, "Data": examples["ZH"][rand_num]}
# JP
if rand_num < len(examples["ZH"]) + len(examples["JP"]):
return {
"status": 0,
"Data": examples["JP"][rand_num - len(examples["ZH"])],
}
# EN
return {
"status": 0,
"Data": examples["EN"][
rand_num - len(examples["ZH"]) - len(examples["JP"])
],
}
else:
if len(examples[language]) == 0:
return {"status": 17, "detail": f"没有加载任何{language}数据"}
return {
"status": 0,
"Data": examples[language][
random.randint(0, len(examples[language]) - 1)
],
}
@app.get("/tools/get_audio")
def get_audio(request: Request, path: str = Query(..., description="本地音频路径")):
logger.info(
f"{request.client.host}:{request.client.port}/tools/get_audio { unquote(str(request.query_params) )}"
)
if not os.path.isfile(path):
logger.error(f"/tools/get_audio 获取音频错误:指定音频{path}不存在")
return {"status": 18, "detail": "指定音频不存在"}
if not path.lower().endswith(".wav"):
logger.error(f"/tools/get_audio 获取音频错误:音频{path}非wav文件")
return {"status": 19, "detail": "非wav格式文件"}
return FileResponse(path=path)
logger.warning("本地服务,请勿将服务端口暴露于外网")
logger.info(f"api文档地址 http://127.0.0.1:{config.server_config.port}/docs")
if os.path.isdir(StaticDir):
webbrowser.open(f"http://127.0.0.1:{config.server_config.port}")
uvicorn.run(
app, port=config.server_config.port, host="0.0.0.0", log_level="warning"
)