This repository has been archived by the owner on Oct 15, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
program.py
executable file
·408 lines (363 loc) · 14.7 KB
/
program.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import yaml
import time
import shutil
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
from ppocr.utils.utility import print_dict
from ppocr.utils.logging import get_logger
from ppocr.data import build_dataloader
import numpy as np
class ArgsParser(ArgumentParser):
def __init__(self):
super(ArgsParser, self).__init__(
formatter_class=RawDescriptionHelpFormatter)
self.add_argument("-c", "--config", help="configuration file to use")
self.add_argument(
"-o", "--opt", nargs='+', help="set configuration options")
self.add_argument("-ih","--height",help="config input height")
self.add_argument("-iw","--width",help="config input width")
def parse_args(self, argv=None):
args = super(ArgsParser, self).parse_args(argv)
assert args.config is not None, \
"Please specify --config=configure_file_path."
args.opt = self._parse_opt(args.opt)
return args
def _parse_opt(self, opts):
config = {}
if not opts:
return config
for s in opts:
s = s.strip()
k, v = s.split('=')
config[k] = yaml.load(v, Loader=yaml.Loader)
return config
class AttrDict(dict):
"""Single level attribute dict, NOT recursive"""
def __init__(self, **kwargs):
super(AttrDict, self).__init__()
super(AttrDict, self).update(kwargs)
def __getattr__(self, key):
if key in self:
return self[key]
raise AttributeError("object has no attribute '{}'".format(key))
global_config = AttrDict()
default_config = {'Global': {'debug': False, }}
def load_config(file_path):
"""
Load config from yml/yaml file.
Args:
file_path (str): Path of the config file to be loaded.
Returns: global config
"""
merge_config(default_config)
_, ext = os.path.splitext(file_path)
assert ext in ['.yml', '.yaml'], "only support yaml files for now"
merge_config(yaml.load(open(file_path, 'rb'), Loader=yaml.Loader))
return global_config
def merge_config(config):
"""
Merge config into global config.
Args:
config (dict): Config to be merged.
Returns: global config
"""
for key, value in config.items():
if "." not in key:
if isinstance(value, dict) and key in global_config:
global_config[key].update(value)
else:
global_config[key] = value
else:
sub_keys = key.split('.')
assert (
sub_keys[0] in global_config
), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
global_config.keys(), sub_keys[0])
cur = global_config[sub_keys[0]]
for idx, sub_key in enumerate(sub_keys[1:]):
if idx == len(sub_keys) - 2:
cur[sub_key] = value
else:
cur = cur[sub_key]
def check_gpu(use_gpu):
"""
Log error and exit when set use_gpu=true in paddlepaddle
cpu version.
"""
err = "Config use_gpu cannot be set as true while you are " \
"using paddlepaddle cpu version ! \nPlease try: \n" \
"\t1. Install paddlepaddle-gpu to run model on GPU \n" \
"\t2. Set use_gpu as false in config file to run " \
"model on CPU"
try:
if use_gpu and not paddle.is_compiled_with_cuda():
print(err)
sys.exit(1)
except Exception as e:
pass
def train(config,
train_dataloader,
valid_dataloader,
device,
model,
loss_class,
optimizer,
lr_scheduler,
post_process_class,
eval_class,
pre_best_model_dict,
logger,
vdl_writer=None):
cal_metric_during_train = config['Global'].get('cal_metric_during_train',
False)
log_smooth_window = config['Global']['log_smooth_window']
epoch_num = config['Global']['epoch_num']
print_batch_step = config['Global']['print_batch_step']
eval_batch_step = config['Global']['eval_batch_step']
global_step = 0
start_eval_step = 0
if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
start_eval_step = eval_batch_step[0]
eval_batch_step = eval_batch_step[1]
if len(valid_dataloader) == 0:
logger.info(
'No Images in eval dataset, evaluation during training will be disabled'
)
start_eval_step = 1e111
logger.info(
"During the training process, after the {}th iteration, an evaluation is run every {} iterations".
format(start_eval_step, eval_batch_step))
save_epoch_step = config['Global']['save_epoch_step']
save_model_dir = config['Global']['save_model_dir']
if not os.path.exists(save_model_dir):
os.makedirs(save_model_dir)
main_indicator = eval_class.main_indicator
best_model_dict = {main_indicator: 0}
best_model_dict.update(pre_best_model_dict)
train_stats = TrainingStats(log_smooth_window, ['lr'])
model_average = False
model.train()
use_srn = config['Architecture']['algorithm'] == "SRN"
if 'start_epoch' in best_model_dict:
start_epoch = best_model_dict['start_epoch']
else:
start_epoch = 1
for epoch in range(start_epoch, epoch_num + 1):
train_dataloader = build_dataloader(
config, 'Train', device, logger, seed=epoch)
train_batch_cost = 0.0
train_reader_cost = 0.0
batch_sum = 0
batch_start = time.time()
for idx, batch in enumerate(train_dataloader):
train_reader_cost += time.time() - batch_start
if idx >= len(train_dataloader):
break
lr = optimizer.get_lr()
images = batch[0]
if use_srn:
others = batch[-4:]
preds = model(images, others)
model_average = True
else:
preds = model(images)
loss = loss_class(preds, batch)
avg_loss = loss['loss']
avg_loss.backward()
optimizer.step()
optimizer.clear_grad()
train_batch_cost += time.time() - batch_start
batch_sum += len(images)
if not isinstance(lr_scheduler, float):
lr_scheduler.step()
# logger and visualdl
stats = {k: v.numpy().mean() for k, v in loss.items()}
stats['lr'] = lr
train_stats.update(stats)
if cal_metric_during_train: # only rec and cls need
batch = [item.numpy() for item in batch]
post_result = post_process_class(preds, batch[1])
eval_class(post_result, batch)
metric = eval_class.get_metric()
train_stats.update(metric)
if vdl_writer is not None and dist.get_rank() == 0:
for k, v in train_stats.get().items():
vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
vdl_writer.add_scalar('TRAIN/lr', lr, global_step)
if dist.get_rank(
) == 0 and global_step > 0 and global_step % print_batch_step == 0:
logs = train_stats.log()
strs = 'epoch: [{}/{}], iter: {}, {}, reader_cost: {:.5f} s, batch_cost: {:.5f} s, samples: {}, ips: {:.5f}'.format(
epoch, epoch_num, global_step, logs, train_reader_cost /
print_batch_step, train_batch_cost / print_batch_step,
batch_sum, batch_sum / train_batch_cost)
logger.info(strs)
train_batch_cost = 0.0
train_reader_cost = 0.0
batch_sum = 0
# eval
if global_step > start_eval_step and \
(global_step - start_eval_step) % eval_batch_step == 0 and dist.get_rank() == 0:
if model_average:
Model_Average = paddle.incubate.optimizer.ModelAverage(
0.15,
parameters=model.parameters(),
min_average_window=10000,
max_average_window=15625)
Model_Average.apply()
cur_metric = eval(
model,
valid_dataloader,
post_process_class,
eval_class,
use_srn=use_srn)
cur_metric_str = 'cur metric, {}'.format(', '.join(
['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
logger.info(cur_metric_str)
# logger metric
if vdl_writer is not None:
for k, v in cur_metric.items():
if isinstance(v, (float, int)):
vdl_writer.add_scalar('EVAL/{}'.format(k),
cur_metric[k], global_step)
if cur_metric[main_indicator] >= best_model_dict[
main_indicator]:
best_model_dict.update(cur_metric)
best_model_dict['best_epoch'] = epoch
save_model(
model,
optimizer,
save_model_dir,
logger,
is_best=True,
prefix='best_accuracy',
best_model_dict=best_model_dict,
epoch=epoch)
best_str = 'best metric, {}'.format(', '.join([
'{}: {}'.format(k, v) for k, v in best_model_dict.items()
]))
logger.info(best_str)
# logger best metric
if vdl_writer is not None:
vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
best_model_dict[main_indicator],
global_step)
global_step += 1
optimizer.clear_grad()
batch_start = time.time()
if dist.get_rank() == 0:
save_model(
model,
optimizer,
save_model_dir,
logger,
is_best=False,
prefix='latest',
best_model_dict=best_model_dict,
epoch=epoch)
if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
save_model(
model,
optimizer,
save_model_dir,
logger,
is_best=False,
prefix='iter_epoch_{}'.format(epoch),
best_model_dict=best_model_dict,
epoch=epoch)
best_str = 'best metric, {}'.format(', '.join(
['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
logger.info(best_str)
if dist.get_rank() == 0 and vdl_writer is not None:
vdl_writer.close()
return
def eval(model, valid_dataloader, post_process_class, eval_class,
use_srn=False):
model.eval()
with paddle.no_grad():
total_frame = 0.0
total_time = 0.0
pbar = tqdm(total=len(valid_dataloader), desc='eval model:')
for idx, batch in enumerate(valid_dataloader):
if idx >= len(valid_dataloader):
break
images = batch[0]
start = time.time()
if use_srn:
others = batch[-4:]
preds = model(images, others)
else:
preds = model(images)
batch = [item.numpy() for item in batch]
# Obtain usable results from post-processing methods
post_result = post_process_class(preds, batch[1])
total_time += time.time() - start
# Evaluate the results of the current batch
eval_class(post_result, batch)
pbar.update(1)
total_frame += len(images)
# Get final metric,eg. acc or hmean
metric = eval_class.get_metric()
pbar.close()
model.train()
metric['fps'] = total_frame / total_time
return metric
def preprocess(is_train=False):
FLAGS = ArgsParser().parse_args()
config = load_config(FLAGS.config)
merge_config(FLAGS.opt)
# check if set use_gpu=True in paddlepaddle cpu version
use_gpu = config['Global']['use_gpu']
check_gpu(use_gpu)
alg = config['Architecture']['algorithm']
assert alg in [
'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN', 'CLS'
]
device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
device = paddle.set_device(device)
config['Global']['distributed'] = dist.get_world_size() != 1
if is_train:
# save_config
save_model_dir = config['Global']['save_model_dir']
os.makedirs(save_model_dir, exist_ok=True)
with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
yaml.dump(
dict(config), f, default_flow_style=False, sort_keys=False)
log_file = '{}/train.log'.format(save_model_dir)
else:
log_file = None
logger = get_logger(name='root', log_file=log_file)
if config['Global']['use_visualdl']:
from visualdl import LogWriter
save_model_dir = config['Global']['save_model_dir']
vdl_writer_path = '{}/vdl/'.format(save_model_dir)
os.makedirs(vdl_writer_path, exist_ok=True)
vdl_writer = LogWriter(logdir=vdl_writer_path)
else:
vdl_writer = None
print_dict(config, logger)
logger.info('train with paddle {} and device {}'.format(paddle.__version__,
device))
return config, device, logger, vdl_writer