Official repository for COLM 2024 paper "DISTFLASHATTN: Distributed Memory-efficient Attention for Long-context LLMs Training". DISTFLASHATTN, also named LightSeq, achieves up to 2x faster, 2-8x longer sequences vs Megatron-LM on 16 80GB A100s.
Paper: https://arxiv.org/pdf/2310.03294.pdf
- [2024/07] Our paper is accepted by COLM 2024!
- [2023/08] 🔥 Our paper is on! We provide a code preview of LightSeq. Stay tuned for future releases!
lightseq_async_attn.py
contains codes for DistAttn adapted from flash attention kernel.async_communication.py
contains codes for communication-computation overlapped and workload-balanced communication.
We provide an example to use lightseq in training. For example, to run LightSeq on 8 nodes, replace the data_path
with your own dataset and run
python -m torch.distributed.run --nproc_per_node=8 \
lightseq/train_lightseq_no_trainer.py \
--model_name_or_path Llama-2-7b-chat-hf \
--data_path <your_dataset>.pkl \
--bf16 \
--output_dir outputs \
--num_train_epochs 3 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 1 \
--evaluation_strategy no \
--save_strategy steps \
--save_steps 1000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True \
--model_max_length 16384 \
--gradient_checkpointing True \
--lazy_preprocess True
Rematerialization-aware gradient checkpointing can save your training time in one line!
We release it as a Python package, fastckpt
, so you install it by
pip install fastckpt
To replace both HF checkpointing with FashCkpt and HF LlamaAttention with FlashAttention, run
# import fastckpt before importing transformers
from fastckpt.llama_flash_attn_ckpt_monkey_patch import replace_hf_ckpt_with_fast_ckpt
replace_hf_ckpt_with_fast_ckpt()
# import transformers and other packages
import transformers
...
Alternatively, if you only want to replace the attention module with FlashAttention, simply run
# import fastckpt before importing transformers
from fastckpt.llama_flash_attn_monkey_patch import replace_llama_attn_with_flash_attn
replace_llama_attn_with_flash_attn()
# import transformers and other packages
import transformers
...
If you find this repo useful, please cite
@article{li2023lightseq,
title={LIGHTSEQ: SEQUENCE LEVEL PARALLELISM FOR DISTRIBUTED TRAINING OF LONG CONTEXT TRANS},
author={Li, Dacheng and Shao, Rulin and Xie𝑠, Anze and Xing𝑐𝑚, Eric P and Gonzalez𝑏, Joseph E and Stoica𝑏, Ion and Ma𝑢, Xuezhe and Zhang𝑠, Hao},
journal={arXiv preprint arXiv:2310.03294},
year={2023}
}