-
Notifications
You must be signed in to change notification settings - Fork 131
/
lib.rs
228 lines (209 loc) · 7.79 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
//! Pure Rust implementation of the [Advanced Encryption Standard][AES]
//! (AES, a.k.a. Rijndael).
//!
//! # ⚠️ Security Warning: Hazmat!
//!
//! This crate implements only the low-level block cipher function, and is intended
//! for use for implementing higher-level constructions *only*. It is NOT
//! intended for direct use in applications.
//!
//! USE AT YOUR OWN RISK!
//!
//! # Supported backends
//! This crate provides multiple backends including a portable pure Rust
//! backend as well as ones based on CPU intrinsics.
//!
//! By default, it performs runtime detection of CPU intrinsics and uses them
//! if they are available.
//!
//! ## "soft" portable backend
//! As a baseline implementation, this crate provides a constant-time pure Rust
//! implementation based on [fixslicing], a more advanced form of bitslicing
//! implemented entirely in terms of bitwise arithmetic with no use of any
//! lookup tables or data-dependent branches.
//!
//! Enabling the `aes_compact` configuration flag will reduce the code size of this
//! backend at the cost of decreased performance (using a modified form of
//! the fixslicing technique called "semi-fixslicing").
//!
//! ## ARMv8 intrinsics (Rust 1.61+)
//! On `aarch64` targets including `aarch64-apple-darwin` (Apple M1) and Linux
//! targets such as `aarch64-unknown-linux-gnu` and `aarch64-unknown-linux-musl`,
//! support for using AES intrinsics provided by the ARMv8 Cryptography Extensions.
//!
//! On Linux and macOS, support for ARMv8 AES intrinsics is autodetected at
//! runtime. On other platforms the `aes` target feature must be enabled via
//! RUSTFLAGS.
//!
//! ## `x86`/`x86_64` intrinsics (AES-NI)
//! By default this crate uses runtime detection on `i686`/`x86_64` targets
//! in order to determine if AES-NI is available, and if it is not, it will
//! fallback to using a constant-time software implementation.
//!
//! Passing `RUSTFLAGS=-C target-feature=+aes,+ssse3` explicitly at compile-time
//! will override runtime detection and ensure that AES-NI is always used.
//! Programs built in this manner will crash with an illegal instruction on
//! CPUs which do not have AES-NI enabled.
//!
//! Note: runtime detection is not possible on SGX targets. Please use the
//! afforementioned `RUSTFLAGS` to leverage AES-NI on these targets.
//!
//! # Examples
//! ```
//! use aes::Aes128;
//! use aes::cipher::{Array, BlockCipherEncrypt, BlockCipherDecrypt, KeyInit};
//!
//! let key = Array::from([0u8; 16]);
//! let mut block = Array::from([42u8; 16]);
//!
//! // Initialize cipher
//! let cipher = Aes128::new(&key);
//!
//! let block_copy = block.clone();
//!
//! // Encrypt block in-place
//! cipher.encrypt_block(&mut block);
//!
//! // And decrypt it back
//! cipher.decrypt_block(&mut block);
//! assert_eq!(block, block_copy);
//!
//! // Implementation supports parallel block processing. Number of blocks
//! // processed in parallel depends in general on hardware capabilities.
//! // This is achieved by instruction-level parallelism (ILP) on a single
//! // CPU core, which is differen from multi-threaded parallelism.
//! let mut blocks = [block; 100];
//! cipher.encrypt_blocks(&mut blocks);
//!
//! for block in blocks.iter_mut() {
//! cipher.decrypt_block(block);
//! assert_eq!(block, &block_copy);
//! }
//!
//! // `decrypt_blocks` also supports parallel block processing.
//! cipher.decrypt_blocks(&mut blocks);
//!
//! for block in blocks.iter_mut() {
//! cipher.encrypt_block(block);
//! assert_eq!(block, &block_copy);
//! }
//! ```
//!
//! For implementation of block cipher modes of operation see
//! [`block-modes`] repository.
//!
//! # Configuration Flags
//!
//! You can modify crate using the following configuration flags:
//!
//! - `aes_force_soft`: force software implementation.
//! - `aes_compact`: reduce code size at the cost of slower performance
//! (affects only software backend).
//!
//! It can be enabled using `RUSTFLAGS` environmental variable
//! (e.g. `RUSTFLAGS="--cfg aes_compact"`) or by modifying `.cargo/config`.
//!
//! [AES]: https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
//! [fixslicing]: https://eprint.iacr.org/2020/1123.pdf
//! [AES-NI]: https://en.wikipedia.org/wiki/AES_instruction_set
//! [`block-modes`]: https://github.com/RustCrypto/block-modes/
#![no_std]
#![doc(
html_logo_url = "https://raw.githubusercontent.com/RustCrypto/media/26acc39f/logo.svg",
html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/media/26acc39f/logo.svg"
)]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![warn(missing_docs, rust_2018_idioms)]
#[cfg(feature = "hazmat")]
pub mod hazmat;
#[macro_use]
mod macros;
mod soft;
use cfg_if::cfg_if;
cfg_if! {
if #[cfg(all(target_arch = "aarch64", not(aes_force_soft)))] {
mod armv8;
mod autodetect;
pub use autodetect::*;
} else if #[cfg(all(
any(target_arch = "x86", target_arch = "x86_64"),
not(aes_force_soft)
))] {
mod autodetect;
mod ni;
pub use autodetect::*;
} else {
pub use soft::*;
}
}
pub use cipher;
use cipher::{
array::Array,
consts::{U16, U8},
};
/// 128-bit AES block
pub type Block = Array<u8, U16>;
/// Eight 128-bit AES blocks
pub type Block8 = Array<Block, U8>;
#[cfg(test)]
mod tests {
#[cfg(feature = "zeroize")]
#[test]
fn zeroize_works() {
use super::soft;
fn test_for<T: zeroize::ZeroizeOnDrop>(val: T) {
use core::mem::{size_of, ManuallyDrop};
let mut val = ManuallyDrop::new(val);
let ptr = &val as *const _ as *const u8;
let len = size_of::<ManuallyDrop<T>>();
unsafe { ManuallyDrop::drop(&mut val) };
let slice = unsafe { core::slice::from_raw_parts(ptr, len) };
assert!(slice.iter().all(|&byte| byte == 0));
}
let key_128 = [42; 16].into();
let key_192 = [42; 24].into();
let key_256 = [42; 32].into();
use cipher::KeyInit as _;
test_for(soft::Aes128::new(&key_128));
test_for(soft::Aes128Enc::new(&key_128));
test_for(soft::Aes128Dec::new(&key_128));
test_for(soft::Aes192::new(&key_192));
test_for(soft::Aes192Enc::new(&key_192));
test_for(soft::Aes192Dec::new(&key_192));
test_for(soft::Aes256::new(&key_256));
test_for(soft::Aes256Enc::new(&key_256));
test_for(soft::Aes256Dec::new(&key_256));
#[cfg(all(any(target_arch = "x86", target_arch = "x86_64"), not(aes_force_soft)))]
{
use super::ni;
cpufeatures::new!(aes_intrinsics, "aes");
if aes_intrinsics::get() {
test_for(ni::Aes128::new(&key_128));
test_for(ni::Aes128Enc::new(&key_128));
test_for(ni::Aes128Dec::new(&key_128));
test_for(ni::Aes192::new(&key_192));
test_for(ni::Aes192Enc::new(&key_192));
test_for(ni::Aes192Dec::new(&key_192));
test_for(ni::Aes256::new(&key_256));
test_for(ni::Aes256Enc::new(&key_256));
test_for(ni::Aes256Dec::new(&key_256));
}
}
#[cfg(all(target_arch = "aarch64", not(aes_force_soft)))]
{
use super::armv8;
cpufeatures::new!(aes_intrinsics, "aes");
if aes_intrinsics::get() {
test_for(armv8::Aes128::new(&key_128));
test_for(armv8::Aes128Enc::new(&key_128));
test_for(armv8::Aes128Dec::new(&key_128));
test_for(armv8::Aes192::new(&key_192));
test_for(armv8::Aes192Enc::new(&key_192));
test_for(armv8::Aes192Dec::new(&key_192));
test_for(armv8::Aes256::new(&key_256));
test_for(armv8::Aes256Enc::new(&key_256));
test_for(armv8::Aes256Dec::new(&key_256));
}
}
}
}