Created by Hang Zhou, Kejiang Chen, Weiming Zhang, Han Fang, Wenbo Zhou, Nenghai Yu.
This repository is for our ICCV 2019 paper DUP-Net: Denoiser and Upsampler Network for 3D Adversarial Point Clouds Defense.
Install TensorFlow. The code has been tested with Python 3.6, TensorFlow 1.12.0, CUDA 9.0 and cuDNN 7 on Ubuntu 16.04.
Compile sh files in directory "tf_ops/" before usage.
To process a point cloud by DUP-Net:
# Statistical outlier removal (SOR)
python filter.py --removal 'sor' \
--batch_size 4 \
--test_path 'data/lsgan_bro1_nogan2' \
--filtered_dir 'data/modelnet40_filtered/filtered_test'
# DUP-Net
python upsample.py --num_point 2048 \
--up_ratio 2 \
--test_path 'data/modelnet40_filtered' \
--upsampled_dir 'data/modelnet40_upsampled/upsampled_test'
To classify the processed point cloud:
python evaluate_filtered_targeted_adv.py --num_classes 40 \
--model_path 'log/modelnet40_pointnet/model.ckpt' \
--test_path 'data/modelnet40_upsampled'
If you find our work useful in your research, please consider citing:
@inproceedings{zhou2019dup,
title={DUP-Net: Denoiser and Upsampler Network for 3D Adversarial Point Clouds Defense},
author={Zhou, Hang and Chen, Kejiang and Zhang, Weiming and Fang, Han and Zhou, Wenbo and Yu, Nenghai},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={1961--1970},
year={2019}
}