-
Notifications
You must be signed in to change notification settings - Fork 13
/
imputers.py
458 lines (338 loc) · 15 KB
/
imputers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import numpy as np
import torch
from geomloss import SamplesLoss
from utils import nanmean, MAE, RMSE
import logging
class OTimputer():
"""
'One parameter equals one imputed value' model (Algorithm 1. in the paper)
Parameters
----------
eps: float, default=0.01
Sinkhorn regularization parameter.
lr : float, default = 0.01
Learning rate.
opt: torch.nn.optim.Optimizer, default=torch.optim.Adam
Optimizer class to use for fitting.
max_iter : int, default=10
Maximum number of round-robin cycles for imputation.
niter : int, default=15
Number of gradient updates for each model within a cycle.
batchsize : int, defatul=128
Size of the batches on which the sinkhorn divergence is evaluated.
n_pairs : int, default=10
Number of batch pairs used per gradient update.
tol : float, default = 0.001
Tolerance threshold for the stopping criterion.
weight_decay : float, default = 1e-5
L2 regularization magnitude.
order : str, default="random"
Order in which the variables are imputed.
Valid values: {"random" or "increasing"}.
unsymmetrize: bool, default=True
If True, sample one batch with no missing
data in each pair during training.
scaling: float, default=0.9
Scaling parameter in Sinkhorn iterations
c.f. geomloss' doc: "Allows you to specify the trade-off between
speed (scaling < .4) and accuracy (scaling > .9)"
"""
def __init__(self,
eps=0.01,
lr=1e-2,
opt=torch.optim.RMSprop,
niter=2000,
batchsize=128,
n_pairs=1,
noise=0.1,
scaling=.9):
self.eps = eps
self.lr = lr
self.opt = opt
self.niter = niter
self.batchsize = batchsize
self.n_pairs = n_pairs
self.noise = noise
self.sk = SamplesLoss("sinkhorn", p=2, blur=eps, scaling=scaling, backend="tensorized")
def fit_transform(self, X, verbose=True, report_interval=500, X_true=None):
"""
Imputes missing values using a batched OT loss
Parameters
----------
X : torch.DoubleTensor or torch.cuda.DoubleTensor
Contains non-missing and missing data at the indices given by the
"mask" argument. Missing values can be arbitrarily assigned
(e.g. with NaNs).
mask : torch.DoubleTensor or torch.cuda.DoubleTensor
mask[i,j] == 1 if X[i,j] is missing, else mask[i,j] == 0.
verbose: bool, default=True
If True, output loss to log during iterations.
X_true: torch.DoubleTensor or None, default=None
Ground truth for the missing values. If provided, will output a
validation score during training, and return score arrays.
For validation/debugging only.
Returns
-------
X_filled: torch.DoubleTensor or torch.cuda.DoubleTensor
Imputed missing data (plus unchanged non-missing data).
"""
X = X.clone()
n, d = X.shape
if self.batchsize > n // 2:
e = int(np.log2(n // 2))
self.batchsize = 2**e
if verbose:
logging.info(f"Batchsize larger that half size = {len(X) // 2}. Setting batchsize to {self.batchsize}.")
mask = torch.isnan(X).double()
imps = (self.noise * torch.randn(mask.shape).double() + nanmean(X, 0))[mask.bool()]
imps.requires_grad = True
optimizer = self.opt([imps], lr=self.lr)
if verbose:
logging.info(f"batchsize = {self.batchsize}, epsilon = {self.eps:.4f}")
if X_true is not None:
maes = np.zeros(self.niter)
rmses = np.zeros(self.niter)
for i in range(self.niter):
X_filled = X.detach().clone()
X_filled[mask.bool()] = imps
loss = 0
for _ in range(self.n_pairs):
idx1 = np.random.choice(n, self.batchsize, replace=False)
idx2 = np.random.choice(n, self.batchsize, replace=False)
X1 = X_filled[idx1]
X2 = X_filled[idx2]
loss = loss + self.sk(X1, X2)
if torch.isnan(loss).any() or torch.isinf(loss).any():
### Catch numerical errors/overflows (should not happen)
logging.info("Nan or inf loss")
break
optimizer.zero_grad()
loss.backward()
optimizer.step()
if X_true is not None:
maes[i] = MAE(X_filled, X_true, mask).item()
rmses[i] = RMSE(X_filled, X_true, mask).item()
if verbose and (i % report_interval == 0):
if X_true is not None:
logging.info(f'Iteration {i}:\t Loss: {loss.item() / self.n_pairs:.4f}\t '
f'Validation MAE: {maes[i]:.4f}\t'
f'RMSE: {rmses[i]:.4f}')
else:
logging.info(f'Iteration {i}:\t Loss: {loss.item() / self.n_pairs:.4f}')
X_filled = X.detach().clone()
X_filled[mask.bool()] = imps
if X_true is not None:
return X_filled, maes, rmses
else:
return X_filled
class RRimputer():
"""
Round-Robin imputer with a batch sinkhorn loss
Parameters
----------
models: iterable
iterable of torch.nn.Module. The j-th model is used to predict the j-th
variable using all others.
eps: float, default=0.01
Sinkhorn regularization parameter.
lr : float, default = 0.01
Learning rate.
opt: torch.nn.optim.Optimizer, default=torch.optim.Adam
Optimizer class to use for fitting.
max_iter : int, default=10
Maximum number of round-robin cycles for imputation.
niter : int, default=15
Number of gradient updates for each model within a cycle.
batchsize : int, defatul=128
Size of the batches on which the sinkhorn divergence is evaluated.
n_pairs : int, default=10
Number of batch pairs used per gradient update.
tol : float, default = 0.001
Tolerance threshold for the stopping criterion.
weight_decay : float, default = 1e-5
L2 regularization magnitude.
order : str, default="random"
Order in which the variables are imputed.
Valid values: {"random" or "increasing"}.
unsymmetrize: bool, default=True
If True, sample one batch with no missing
data in each pair during training.
scaling: float, default=0.9
Scaling parameter in Sinkhorn iterations
c.f. geomloss' doc: "Allows you to specify the trade-off between
speed (scaling < .4) and accuracy (scaling > .9)"
"""
def __init__(self,
models,
eps= 0.01,
lr=1e-2,
opt=torch.optim.Adam,
max_iter=10,
niter=15,
batchsize=128,
n_pairs=10,
tol=1e-3,
noise=0.1,
weight_decay=1e-5,
order='random',
unsymmetrize=True,
scaling=.9):
self.models = models
self.sk = SamplesLoss("sinkhorn", p=2, blur=eps,
scaling=scaling, backend="auto")
self.lr = lr
self.opt = opt
self.max_iter = max_iter
self.niter = niter
self.batchsize = batchsize
self.n_pairs = n_pairs
self.tol = tol
self.noise = noise
self.weight_decay=weight_decay
self.order=order
self.unsymmetrize = unsymmetrize
self.is_fitted = False
def fit_transform(self, X, verbose=True,
report_interval=1, X_true=None):
"""
Fits the imputer on a dataset with missing data, and returns the
imputations.
Parameters
----------
X : torch.DoubleTensor or torch.cuda.DoubleTensor, shape (n, d)
Contains non-missing and missing data at the indices given by the
"mask" argument. Missing values can be arbitrarily assigned
(e.g. with NaNs).
mask : torch.DoubleTensor or torch.cuda.DoubleTensor, shape (n, d)
mask[i,j] == 1 if X[i,j] is missing, else mask[i,j] == 0.
verbose : bool, default=True
If True, output loss to log during iterations.
report_interval : int, default=1
Interval between loss reports (if verbose).
X_true: torch.DoubleTensor or None, default=None
Ground truth for the missing values. If provided, will output a
validation score during training. For debugging only.
Returns
-------
X_filled: torch.DoubleTensor or torch.cuda.DoubleTensor
Imputed missing data (plus unchanged non-missing data).
"""
X = X.clone()
n, d = X.shape
mask = torch.isnan(X).double()
normalized_tol = self.tol * torch.max(torch.abs(X[~mask.bool()]))
if self.batchsize > n // 2:
e = int(np.log2(n // 2))
self.batchsize = 2**e
if verbose:
logging.info(f"Batchsize larger that half size = {len(X) // 2}."
f" Setting batchsize to {self.batchsize}.")
order_ = torch.argsort(mask.sum(0))
optimizers = [self.opt(self.models[i].parameters(),
lr=self.lr, weight_decay=self.weight_decay) for i in range(d)]
imps = (self.noise * torch.randn(mask.shape).double() + nanmean(X, 0))[mask.bool()]
X[mask.bool()] = imps
X_filled = X.clone()
if X_true is not None:
maes = np.zeros(self.max_iter)
rmses = np.zeros(self.max_iter)
for i in range(self.max_iter):
if self.order == 'random':
order_ = np.random.choice(d, d, replace=False)
X_old = X_filled.clone().detach()
loss = 0
for l in range(d):
j = order_[l].item()
n_not_miss = (~mask[:, j].bool()).sum().item()
if n - n_not_miss == 0:
continue # no missing value on that coordinate
for k in range(self.niter):
loss = 0
X_filled = X_filled.detach()
X_filled[mask[:, j].bool(), j] = self.models[j](X_filled[mask[:, j].bool(), :][:, np.r_[0:j, j+1: d]]).squeeze()
for _ in range(self.n_pairs):
idx1 = np.random.choice(n, self.batchsize, replace=False)
X1 = X_filled[idx1]
if self.unsymmetrize:
n_miss = (~mask[:, j].bool()).sum().item()
idx2 = np.random.choice(n_miss, self.batchsize, replace= self.batchsize > n_miss)
X2 = X_filled[~mask[:, j].bool(), :][idx2]
else:
idx2 = np.random.choice(n, self.batchsize, replace=False)
X2 = X_filled[idx2]
loss = loss + self.sk(X1, X2)
optimizers[j].zero_grad()
loss.backward()
optimizers[j].step()
# Impute with last parameters
with torch.no_grad():
X_filled[mask[:, j].bool(), j] = self.models[j](X_filled[mask[:, j].bool(), :][:, np.r_[0:j, j+1: d]]).squeeze()
if X_true is not None:
maes[i] = MAE(X_filled, X_true, mask).item()
rmses[i] = RMSE(X_filled, X_true, mask).item()
if verbose and (i % report_interval == 0):
if X_true is not None:
logging.info(f'Iteration {i}:\t Loss: {loss.item() / self.n_pairs:.4f}\t'
f'Validation MAE: {maes[i]:.4f}\t'
f'RMSE: {rmses[i]: .4f}')
else:
logging.info(f'Iteration {i}:\t Loss: {loss.item() / self.n_pairs:.4f}')
if torch.norm(X_filled - X_old, p=np.inf) < normalized_tol:
break
if i == (self.max_iter - 1) and verbose:
logging.info('Early stopping criterion not reached')
self.is_fitted = True
if X_true is not None:
return X_filled, maes, rmses
else:
return X_filled
def transform(self, X, mask, verbose=True, report_interval=1, X_true=None):
"""
Impute missing values on new data. Assumes models have been previously
fitted on other data.
Parameters
----------
X : torch.DoubleTensor or torch.cuda.DoubleTensor, shape (n, d)
Contains non-missing and missing data at the indices given by the
"mask" argument. Missing values can be arbitrarily assigned
(e.g. with NaNs).
mask : torch.DoubleTensor or torch.cuda.DoubleTensor, shape (n, d)
mask[i,j] == 1 if X[i,j] is missing, else mask[i,j] == 0.
verbose: bool, default=True
If True, output loss to log during iterations.
report_interval : int, default=1
Interval between loss reports (if verbose).
X_true: torch.DoubleTensor or None, default=None
Ground truth for the missing values. If provided, will output a
validation score during training. For debugging only.
Returns
-------
X_filled: torch.DoubleTensor or torch.cuda.DoubleTensor
Imputed missing data (plus unchanged non-missing data).
"""
assert self.is_fitted, "The model has not been fitted yet."
n, d = X.shape
normalized_tol = self.tol * torch.max(torch.abs(X[~mask.bool()]))
order_ = torch.argsort(mask.sum(0))
X[mask] = nanmean(X)
X_filled = X.clone()
for i in range(self.max_iter):
if self.order == 'random':
order_ = np.random.choice(d, d, replace=False)
X_old = X_filled.clone().detach()
for l in range(d):
j = order_[l].item()
with torch.no_grad():
X_filled[mask[:, j].bool(), j] = self.models[j](X_filled[mask[:, j].bool(), :][:, np.r_[0:j, j+1: d]]).squeeze()
if verbose and (i % report_interval == 0):
if X_true is not None:
logging.info(f'Iteration {i}:\t '
f'Validation MAE: {MAE(X_filled, X_true, mask).item():.4f}\t'
f'RMSE: {RMSE(X_filled, X_true, mask).item():.4f}')
if torch.norm(X_filled - X_old, p=np.inf) < normalized_tol:
break
if i == (self.max_iter - 1) and verbose:
logging.info('Early stopping criterion not reached')
return X_filled