forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bloom.cpp
730 lines (610 loc) · 31.9 KB
/
bloom.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
/*
* Vulkan Example - Implements a separable two-pass fullscreen blur (also known as bloom)
*
* Copyright (C) Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
#define ENABLE_VALIDATION false
// Offscreen frame buffer properties
#define FB_DIM 256
#define FB_COLOR_FORMAT VK_FORMAT_R8G8B8A8_UNORM
class VulkanExample : public VulkanExampleBase
{
public:
bool bloom = true;
vks::TextureCubeMap cubemap;
struct {
vkglTF::Model ufo;
vkglTF::Model ufoGlow;
vkglTF::Model skyBox;
} models;
struct {
vks::Buffer scene;
vks::Buffer skyBox;
vks::Buffer blurParams;
} uniformBuffers;
struct UBO {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
};
struct UBOBlurParams {
float blurScale = 1.0f;
float blurStrength = 1.5f;
};
struct {
UBO scene, skyBox;
UBOBlurParams blurParams;
} ubos;
struct {
VkPipeline blurVert;
VkPipeline blurHorz;
VkPipeline glowPass;
VkPipeline phongPass;
VkPipeline skyBox;
} pipelines;
struct {
VkPipelineLayout blur;
VkPipelineLayout scene;
} pipelineLayouts;
struct {
VkDescriptorSet blurVert;
VkDescriptorSet blurHorz;
VkDescriptorSet scene;
VkDescriptorSet skyBox;
} descriptorSets;
struct {
VkDescriptorSetLayout blur;
VkDescriptorSetLayout scene;
} descriptorSetLayouts;
// Framebuffer for offscreen rendering
struct FrameBufferAttachment {
VkImage image;
VkDeviceMemory mem;
VkImageView view;
};
struct FrameBuffer {
VkFramebuffer framebuffer;
FrameBufferAttachment color, depth;
VkDescriptorImageInfo descriptor;
};
struct OffscreenPass {
int32_t width, height;
VkRenderPass renderPass;
VkSampler sampler;
std::array<FrameBuffer, 2> framebuffers;
} offscreenPass;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Bloom (offscreen rendering)";
timerSpeed *= 0.5f;
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -10.25f));
camera.setRotation(glm::vec3(7.5f, -343.0f, 0.0f));
camera.setPerspective(45.0f, (float)width / (float)height, 0.1f, 256.0f);
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroySampler(device, offscreenPass.sampler, nullptr);
// Frame buffer
for (auto& framebuffer : offscreenPass.framebuffers)
{
// Attachments
vkDestroyImageView(device, framebuffer.color.view, nullptr);
vkDestroyImage(device, framebuffer.color.image, nullptr);
vkFreeMemory(device, framebuffer.color.mem, nullptr);
vkDestroyImageView(device, framebuffer.depth.view, nullptr);
vkDestroyImage(device, framebuffer.depth.image, nullptr);
vkFreeMemory(device, framebuffer.depth.mem, nullptr);
vkDestroyFramebuffer(device, framebuffer.framebuffer, nullptr);
}
vkDestroyRenderPass(device, offscreenPass.renderPass, nullptr);
vkDestroyPipeline(device, pipelines.blurHorz, nullptr);
vkDestroyPipeline(device, pipelines.blurVert, nullptr);
vkDestroyPipeline(device, pipelines.phongPass, nullptr);
vkDestroyPipeline(device, pipelines.glowPass, nullptr);
vkDestroyPipeline(device, pipelines.skyBox, nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.blur , nullptr);
vkDestroyPipelineLayout(device, pipelineLayouts.scene, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.blur, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.scene, nullptr);
// Uniform buffers
uniformBuffers.scene.destroy();
uniformBuffers.skyBox.destroy();
uniformBuffers.blurParams.destroy();
cubemap.destroy();
}
// Setup the offscreen framebuffer for rendering the mirrored scene
// The color attachment of this framebuffer will then be sampled from
void prepareOffscreenFramebuffer(FrameBuffer *frameBuf, VkFormat colorFormat, VkFormat depthFormat)
{
// Color attachment
VkImageCreateInfo image = vks::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.format = colorFormat;
image.extent.width = FB_DIM;
image.extent.height = FB_DIM;
image.extent.depth = 1;
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
// We will sample directly from the color attachment
image.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo();
colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
colorImageView.format = colorFormat;
colorImageView.flags = 0;
colorImageView.subresourceRange = {};
colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
colorImageView.subresourceRange.baseMipLevel = 0;
colorImageView.subresourceRange.levelCount = 1;
colorImageView.subresourceRange.baseArrayLayer = 0;
colorImageView.subresourceRange.layerCount = 1;
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &frameBuf->color.image));
vkGetImageMemoryRequirements(device, frameBuf->color.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &frameBuf->color.mem));
VK_CHECK_RESULT(vkBindImageMemory(device, frameBuf->color.image, frameBuf->color.mem, 0));
colorImageView.image = frameBuf->color.image;
VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &frameBuf->color.view));
// Depth stencil attachment
image.format = depthFormat;
image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
VkImageViewCreateInfo depthStencilView = vks::initializers::imageViewCreateInfo();
depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthStencilView.format = depthFormat;
depthStencilView.flags = 0;
depthStencilView.subresourceRange = {};
depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
depthStencilView.subresourceRange.baseMipLevel = 0;
depthStencilView.subresourceRange.levelCount = 1;
depthStencilView.subresourceRange.baseArrayLayer = 0;
depthStencilView.subresourceRange.layerCount = 1;
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &frameBuf->depth.image));
vkGetImageMemoryRequirements(device, frameBuf->depth.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &frameBuf->depth.mem));
VK_CHECK_RESULT(vkBindImageMemory(device, frameBuf->depth.image, frameBuf->depth.mem, 0));
depthStencilView.image = frameBuf->depth.image;
VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &frameBuf->depth.view));
VkImageView attachments[2];
attachments[0] = frameBuf->color.view;
attachments[1] = frameBuf->depth.view;
VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo();
fbufCreateInfo.renderPass = offscreenPass.renderPass;
fbufCreateInfo.attachmentCount = 2;
fbufCreateInfo.pAttachments = attachments;
fbufCreateInfo.width = FB_DIM;
fbufCreateInfo.height = FB_DIM;
fbufCreateInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &frameBuf->framebuffer));
// Fill a descriptor for later use in a descriptor set
frameBuf->descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
frameBuf->descriptor.imageView = frameBuf->color.view;
frameBuf->descriptor.sampler = offscreenPass.sampler;
}
// Prepare the offscreen framebuffers used for the vertical- and horizontal blur
void prepareOffscreen()
{
offscreenPass.width = FB_DIM;
offscreenPass.height = FB_DIM;
// Find a suitable depth format
VkFormat fbDepthFormat;
VkBool32 validDepthFormat = vks::tools::getSupportedDepthFormat(physicalDevice, &fbDepthFormat);
assert(validDepthFormat);
// Create a separate render pass for the offscreen rendering as it may differ from the one used for scene rendering
std::array<VkAttachmentDescription, 2> attchmentDescriptions = {};
// Color attachment
attchmentDescriptions[0].format = FB_COLOR_FORMAT;
attchmentDescriptions[0].samples = VK_SAMPLE_COUNT_1_BIT;
attchmentDescriptions[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attchmentDescriptions[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attchmentDescriptions[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attchmentDescriptions[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attchmentDescriptions[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attchmentDescriptions[0].finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
// Depth attachment
attchmentDescriptions[1].format = fbDepthFormat;
attchmentDescriptions[1].samples = VK_SAMPLE_COUNT_1_BIT;
attchmentDescriptions[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attchmentDescriptions[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attchmentDescriptions[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attchmentDescriptions[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attchmentDescriptions[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attchmentDescriptions[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
VkAttachmentReference depthReference = { 1, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL };
VkSubpassDescription subpassDescription = {};
subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpassDescription.colorAttachmentCount = 1;
subpassDescription.pColorAttachments = &colorReference;
subpassDescription.pDepthStencilAttachment = &depthReference;
// Use subpass dependencies for layout transitions
std::array<VkSubpassDependency, 2> dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
// Create the actual renderpass
VkRenderPassCreateInfo renderPassInfo = {};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassInfo.attachmentCount = static_cast<uint32_t>(attchmentDescriptions.size());
renderPassInfo.pAttachments = attchmentDescriptions.data();
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpassDescription;
renderPassInfo.dependencyCount = static_cast<uint32_t>(dependencies.size());
renderPassInfo.pDependencies = dependencies.data();
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassInfo, nullptr, &offscreenPass.renderPass));
// Create sampler to sample from the color attachments
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 1.0f;
sampler.minLod = 0.0f;
sampler.maxLod = 1.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &offscreenPass.sampler));
// Create two frame buffers
prepareOffscreenFramebuffer(&offscreenPass.framebuffers[0], FB_COLOR_FORMAT, fbDepthFormat);
prepareOffscreenFramebuffer(&offscreenPass.framebuffers[1], FB_COLOR_FORMAT, fbDepthFormat);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
VkViewport viewport;
VkRect2D scissor;
/*
The blur method used in this example is multi pass and renders the vertical blur first and then the horizontal one
While it's possible to blur in one pass, this method is widely used as it requires far less samples to generate the blur
*/
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
if (bloom) {
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = offscreenPass.renderPass;
renderPassBeginInfo.framebuffer = offscreenPass.framebuffers[0].framebuffer;
renderPassBeginInfo.renderArea.extent.width = offscreenPass.width;
renderPassBeginInfo.renderArea.extent.height = offscreenPass.height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
viewport = vks::initializers::viewport((float)offscreenPass.width, (float)offscreenPass.height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
scissor = vks::initializers::rect2D(offscreenPass.width, offscreenPass.height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
/*
First render pass: Render glow parts of the model (separate mesh) to an offscreen frame buffer
*/
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.scene, 0, 1, &descriptorSets.scene, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.glowPass);
models.ufoGlow.draw(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
/*
Second render pass: Vertical blur
Render contents of the first pass into a second framebuffer and apply a vertical blur
This is the first blur pass, the horizontal blur is applied when rendering on top of the scene
*/
renderPassBeginInfo.framebuffer = offscreenPass.framebuffers[1].framebuffer;
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.blur, 0, 1, &descriptorSets.blurVert, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.blurVert);
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
}
/*
Note: Explicit synchronization is not required between the render pass, as this is done implicit via sub pass dependencies
*/
/*
Third render pass: Scene rendering with applied vertical blur
Renders the scene and the (vertically blurred) contents of the second framebuffer and apply a horizontal blur
*/
{
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.framebuffer = frameBuffers[i];
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
// Skybox
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.scene, 0, 1, &descriptorSets.skyBox, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skyBox);
models.skyBox.draw(drawCmdBuffers[i]);
// 3D scene
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.scene, 0, 1, &descriptorSets.scene, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.phongPass);
models.ufo.draw(drawCmdBuffers[i]);
if (bloom)
{
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.blur, 0, 1, &descriptorSets.blurHorz, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.blurHorz);
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
}
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
}
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
models.ufo.loadFromFile(getAssetPath() + "models/retroufo.gltf", vulkanDevice, queue, glTFLoadingFlags);
models.ufoGlow.loadFromFile(getAssetPath() + "models/retroufo_glow.gltf", vulkanDevice, queue, glTFLoadingFlags);
models.skyBox.loadFromFile(getAssetPath() + "models/cube.gltf", vulkanDevice, queue, glTFLoadingFlags);
cubemap.loadFromFile(getAssetPath() + "textures/cubemap_space.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 8),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 6)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 5);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings;
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCreateInfo;
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo;
// Fullscreen blur
setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 0), // Binding 0: Fragment shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) // Binding 1: Fragment shader image sampler
};
descriptorSetLayoutCreateInfo = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCreateInfo, nullptr, &descriptorSetLayouts.blur));
pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.blur, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayouts.blur));
// Scene rendering
setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), // Binding 1 : Fragment shader image sampler
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 2), // Binding 2 : Fragment shader image sampler
};
descriptorSetLayoutCreateInfo = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), setLayoutBindings.size());
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCreateInfo, nullptr, &descriptorSetLayouts.scene));
pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.scene, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayouts.scene));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo descriptorSetAllocInfo;
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
// Full screen blur
// Vertical
descriptorSetAllocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.blur, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorSetAllocInfo, &descriptorSets.blurVert));
writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.blurVert, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.blurParams.descriptor), // Binding 0: Fragment shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.blurVert, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &offscreenPass.framebuffers[0].descriptor), // Binding 1: Fragment shader texture sampler
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// Horizontal
descriptorSetAllocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.blur, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorSetAllocInfo, &descriptorSets.blurHorz));
writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.blurHorz, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.blurParams.descriptor), // Binding 0: Fragment shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.blurHorz, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &offscreenPass.framebuffers[1].descriptor), // Binding 1: Fragment shader texture sampler
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// Scene rendering
descriptorSetAllocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.scene, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorSetAllocInfo, &descriptorSets.scene));
writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor) // Binding 0: Vertex shader uniform buffer
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// Skybox
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorSetAllocInfo, &descriptorSets.skyBox));
writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.skyBox, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.skyBox.descriptor), // Binding 0: Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.skyBox, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &cubemap.descriptor), // Binding 1: Fragment shader texture sampler
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), dynamicStateEnables.size(), 0);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.blur, renderPass, 0);
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
pipelineCI.stageCount = shaderStages.size();
pipelineCI.pStages = shaderStages.data();
// Blur pipelines
shaderStages[0] = loadShader(getShadersPath() + "bloom/gaussblur.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "bloom/gaussblur.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Empty vertex input state
VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
pipelineCI.pVertexInputState = &emptyInputState;
pipelineCI.layout = pipelineLayouts.blur;
// Additive blending
blendAttachmentState.colorWriteMask = 0xF;
blendAttachmentState.blendEnable = VK_TRUE;
blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE;
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE;
blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_DST_ALPHA;
// Use specialization constants to select between horizontal and vertical blur
uint32_t blurdirection = 0;
VkSpecializationMapEntry specializationMapEntry = vks::initializers::specializationMapEntry(0, 0, sizeof(uint32_t));
VkSpecializationInfo specializationInfo = vks::initializers::specializationInfo(1, &specializationMapEntry, sizeof(uint32_t), &blurdirection);
shaderStages[1].pSpecializationInfo = &specializationInfo;
// Vertical blur pipeline
pipelineCI.renderPass = offscreenPass.renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.blurVert));
// Horizontal blur pipeline
blurdirection = 1;
pipelineCI.renderPass = renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.blurHorz));
// Phong pass (3D model)
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({vkglTF::VertexComponent::Position, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Color, vkglTF::VertexComponent::Normal});
pipelineCI.layout = pipelineLayouts.scene;
shaderStages[0] = loadShader(getShadersPath() + "bloom/phongpass.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "bloom/phongpass.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
blendAttachmentState.blendEnable = VK_FALSE;
depthStencilStateCI.depthWriteEnable = VK_TRUE;
rasterizationStateCI.cullMode = VK_CULL_MODE_BACK_BIT;
pipelineCI.renderPass = renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.phongPass));
// Color only pass (offscreen blur base)
shaderStages[0] = loadShader(getShadersPath() + "bloom/colorpass.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "bloom/colorpass.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
pipelineCI.renderPass = offscreenPass.renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.glowPass));
// Skybox (cubemap)
shaderStages[0] = loadShader(getShadersPath() + "bloom/skybox.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "bloom/skybox.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
depthStencilStateCI.depthWriteEnable = VK_FALSE;
rasterizationStateCI.cullMode = VK_CULL_MODE_FRONT_BIT;
pipelineCI.renderPass = renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.skyBox));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Phong and color pass vertex shader uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.scene,
sizeof(ubos.scene)));
// Blur parameters uniform buffers
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.blurParams,
sizeof(ubos.blurParams)));
// Skybox
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.skyBox,
sizeof(ubos.skyBox)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.scene.map());
VK_CHECK_RESULT(uniformBuffers.blurParams.map());
VK_CHECK_RESULT(uniformBuffers.skyBox.map());
// Initialize uniform buffers
updateUniformBuffersScene();
updateUniformBuffersBlur();
}
// Update uniform buffers for rendering the 3D scene
void updateUniformBuffersScene()
{
// UFO
ubos.scene.projection = camera.matrices.perspective;
ubos.scene.view = camera.matrices.view;
ubos.scene.model = glm::translate(glm::mat4(1.0f), glm::vec3(sin(glm::radians(timer * 360.0f)) * 0.25f, -1.0f, cos(glm::radians(timer * 360.0f)) * 0.25f));
ubos.scene.model = glm::rotate(ubos.scene.model, -sinf(glm::radians(timer * 360.0f)) * 0.15f, glm::vec3(1.0f, 0.0f, 0.0f));
ubos.scene.model = glm::rotate(ubos.scene.model, glm::radians(timer * 360.0f), glm::vec3(0.0f, 1.0f, 0.0f));
memcpy(uniformBuffers.scene.mapped, &ubos.scene, sizeof(ubos.scene));
// Skybox
ubos.skyBox.projection = glm::perspective(glm::radians(45.0f), (float)width / (float)height, 0.1f, 256.0f);
ubos.skyBox.view = glm::mat4(glm::mat3(camera.matrices.view));
ubos.skyBox.model = glm::mat4(1.0f);
memcpy(uniformBuffers.skyBox.mapped, &ubos.skyBox, sizeof(ubos.skyBox));
}
// Update blur pass parameter uniform buffer
void updateUniformBuffersBlur()
{
memcpy(uniformBuffers.blurParams.mapped, &ubos.blurParams, sizeof(ubos.blurParams));
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
prepareOffscreen();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (!paused || camera.updated)
{
updateUniformBuffersScene();
}
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->checkBox("Bloom", &bloom)) {
buildCommandBuffers();
}
if (overlay->inputFloat("Scale", &ubos.blurParams.blurScale, 0.1f, 2)) {
updateUniformBuffersBlur();
}
}
}
};
VULKAN_EXAMPLE_MAIN()