Given a set of candidate numbers (candidates) (without duplicates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.
The same repeated number may be chosen from candidates unlimited number of times.
Note:
All numbers (including target) will be positive integers. The solution set must not contain duplicate combinations.
Example 1:
Input: candidates = [2,3,6,7], target = 7,
A solution set is:
[
[7],
[2,2,3]
]
Example 2:
Input: candidates = [2,3,5], target = 8,
A solution set is:
[
[2,2,2,2],
[2,3,3],
[3,5]
]
回溯法。
比如例子2:
尝试的过程为:
[] target = 8
[2] target = 6
[2,2] target = 4
[2,2,2] target = 6
[2,2,2,2] target = 8 满足条件记录下来,回溯到上一步
[2,2,2,3] target = -1 target < 0 回溯
[2,2,2,5] target = -3 target < 0 回溯
[2,2,2] 遍历完毕 回溯
[2,2,3] target = 1
[2,2,3,3] target = -2 target < 0 回溯
[2,2,3,5] target = -4 target < 0 回溯
[2,2,3] 遍历完毕 回溯
[2,3] target = 5
[2,3,3] target = 8 满足条件记录下来,回溯
.....
func combinationSum(candidates []int, target int) [][]int {
res := make([][]int, 0)
sort.Ints(candidates)
backtrack(candidates,target,nil,&res,0)
return res
}
func backtrack(candidates []int,target int,chosen []int, res *[][]int, begin int) bool {
if target < 0 {
return false
}
if target == 0 {
one_res := make([]int, len(chosen))
copy(one_res, chosen)
*res = append(*res, one_res)
return false
}
for i := begin; i < len(candidates); i += 1 {
if !backtrack(candidates, target-candidates[i], append(chosen, candidates[i]), res, i) {
break
}
}
return true
}