-
Notifications
You must be signed in to change notification settings - Fork 53
/
random-features.bib
2913 lines (2678 loc) · 94.9 KB
/
random-features.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
@article{Berry2018ImprovedHamiltonians,
title = {{Improved techniques for preparing eigenstates of fermionic Hamiltonians}},
year = {2018},
journal = {npj Quantum Information},
author = {Berry, Dominic W. and Kieferov{\'{a}}, Mária and Scherer, Artur and Sanders, Yuval R. and Low, Guang Hao and Wiebe, Nathan and Gidney, Craig and Babbush, Ryan},
number = {1},
% % month = {12},
pages = {22},
volume = {4},
url = {http://arxiv.org/abs/1711.10460},
doi = {10.1038/s41534-018-0071-5},
issn = {2056-6387},
arxivId = {1711.10460}
}
@misc{haner2018,
title = "Optimizing Quantum Circuits for Arithmetic",
author = {H\"{a}ner, Thomas and Roetteler, Martin and Svore, Krysta M.},
arxivId = {1805.12445},
arxivPrefix = {arXiv},
URL = {https://arxiv.org/abs/1805.12445},
year = {2018}
}
@inproceedings{LeGall2014InversionMultiplication,
author = {Le~Gall, Fran\c{c}ois},
title = {Powers of Tensors and Fast Matrix Multiplication},
booktitle = {Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation},
series = {ISSAC '14},
year = {2014},
isbn = {978-1-4503-2501-1},
location = {Kobe, Japan},
pages = {296--303},
numpages = {8},
url = {http://doi.acm.org/10.1145/2608628.2608664},
doi = {10.1145/2608628.2608664},
acmid = {2608664},
publisher = {ACM},
address = {New York, NY, USA},
keywords = {algebraic complexity theory, matrix multiplication},
}
@article{Montanaro2016,
doi = {10.1038/npjqi.2015.23},
url = {https://doi.org/10.1038/npjqi.2015.23},
year = {2016},
% % month = jan,
publisher = {Springer Science and Business Media {LLC}},
volume = {2},
number = {1},
author = {Ashley Montanaro},
title = {Quantum algorithms: an overview},
journal = {npj Quantum Information}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Now for a bad bib file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@Article{S1,
author="Schaback, Robert",
title="The missing Wendland functions",
journal="Advances in Computational Mathematics",
year="2011",
% month="Jan",
day="01",
volume="34",
number="1",
pages="67--81",
issn="1572-9044",
doi="10.1007/s10444-009-9142-7",
url="https://link.springer.com/article/10.1007/s10444-009-9142-7"
}
@Article{W1,
author="Wendland, Holger",
title="Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree",
journal="Advances in Computational Mathematics",
year="1995",
% month="Dec",
day="01",
volume="4",
number="1",
pages="389--396",
issn="1572-9044",
doi="10.1007/BF02123482",
url="https://link.springer.com/article/10.1007/BF02123482"
}
@book{W2,
place={Cambridge},
series={Cambridge Monographs on Applied and Computational Mathematics},
title={Scattered Data Approximation},
DOI={10.1017/CBO9780511617539},
publisher={Cambridge University Press},
author={Wendland, Holger},
year={2004},
collection={Cambridge Monographs on Applied and Computational Mathematics},
url={https://www.cambridge.org/core/books/scattered-data-approximation/980EEC9DBC4CAA711D089187818135E3}
}
@book{R1,
place={New York},
series={Graduate Texts in Mathematics},
title={Matrix Analysis},
DOI={10.1007/978-1-4612-0653-8},
publisher={Springer-Verlag New York},
author={Bhatia,Rajendra},
year={1997},
url={https://www.springer.com/gp/book/9780387948461}
}
@article{B1,
author = {Francis Bach},
title = {On the Equivalence between Kernel Quadrature Rules and Random Feature Expansions},
journal = {Journal of Machine Learning Research},
year = {2017},
volume = {18},
number = {21},
pages = {1-38},
url = {http://jmlr.org/papers/v18/15-178.html}
}
@article{C1,
title = "Closed form representations and properties of the generalised Wendland functions",
journal = "Journal of Approximation Theory",
volume = "177",
pages = "17 - 33",
year = "2014",
issn = "0021-9045",
doi = "https://doi.org/10.1016/j.jat.2013.09.005",
url = "http://www.sciencedirect.com/science/article/pii/S0021904513001536",
author = "Chernih, Andrew and Hubbert, Simon",
}
@book{S2,
place={Cambridge},
title={Kernel Methods for Pattern Analysis},
DOI={10.1017/CBO9780511809682},
publisher={Cambridge University Press},
author={Shawe-Taylor, John and Cristianini, Nello},
year={2004},
url={https://www.cambridge.org/core/books/kernel-methods-for-pattern-analysis/811462F4D6CD6A536A05127319A8935A}
}
@ARTICLE{C2,
author = {Cucker, Felipe and Smale, Steve},
title = {On the mathematical foundations of learning},
journal = {Bulletin of the American Mathematical Society},
year = {2002},
volume = {39},
pages = {1--49},
url={https://www.ams.org/journals/bull/2002-39-01/S0273-0979-01-00923-5/#Additional}
}
@conference{A1,
author={Arg\'{a}ez, Carlos and Hafstein, Sigurdur and Giesl, Peter},
title={Wendland Functions - A C++ Code to Compute Them},
booktitle={Proceedings of the 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2017},
pages={323-330},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006441303230330},
isbn={978-989-758-265-3},
url={http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006441303230330}
}
@article{K1,
title = "Approximation theory for matrices",
journal = "Nuclear Phys. B",
volume = "128",
pages = "107 - 116",
year = "2004",
% % month = {Feb},
note = "Proceedings of the 2nd Cairns Topical Workshop on Lattice Hadron Physics",
issn = "0920-5632",
doi = "https://doi.org/10.1016/S0920-5632(03)02466-6",
url = "http://www.sciencedirect.com/science/article/pii/S0920563203024666",
author = "Kennedy, A.D."
}
@unpublished{K2,
title = "Fast Evaluation of Zolotarev Coefficients",
author = "Kennedy, A.D.",
arxivPrefix = {arxiv},
arxivId = {hep-lat/0402038},
URL = {https://arxiv.org/abs/hep-lat/0402038},
% month={Feb},
year = {2014},
}
@book{P1,
place={Cambridge},
series={Encyclopedia of Mathematics and its Applications},
title={Rational Approximation of Real Functions},
DOI={10.1017/CBO9781107340756},
publisher={Cambridge University Press},
author={Petrushev, P. P. and Popov, Vasil Atanasov},
year={1988},
collection={Encyclopedia of Mathematics and its Applications}
}
@article{C3,
title={Performing Out-of Core FFTs on Parallel Disk Systems},
author={Cormen, Thomas H. and Nicol, David M.},
journal={Parallel Computing},
year={1998},
volume={24},
pages={5-20}
}
@article{Z1,
title = {Quantum-assisted Gaussian process regression},
author = {Zhao, Zhikuan and Fitzsimons, Jack K. and Fitzsimons, Joseph F.},
journal = {Phys. Rev. A},
volume = {99},
issue = {5},
pages = {052331},
numpages = {6},
year = {2019},
% % month = {May},
publisher = {American Physical Society},
doi = {10.1103/PhysRevA.99.052331},
url = {https://link.aps.org/doi/10.1103/PhysRevA.99.052331}
}
@unpublished{G2,
author = {Gily\'{e}n, Andr\'{a}s and Lloyd, Seth and Tang, Ewin},
title = {Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension},
arxivPrefix = {arxiv},
arxivId = {1811.04909},
URL = {https://arxiv.org/abs/1811.04909},
% month={Nov},
year = {2018},
}
@unpublished{C4,
author = {Chia, Nai-Hui and Lin, Han-Hsuan and Wang, Chunhao},
title = {Quantum-inspired sublinear classical algorithms for solving low-rank linear systems},
arxivPrefix = {arxiv},
arxivId = {1811.04852},
URL = {https://arxiv.org/abs/1811.04852},
% month={Nov},
year = {2018},
}
@article{W3,
title = {Quantum algorithm for linear regression},
author = {Wang, Guoming},
journal = {Phys. Rev. A},
volume = {96},
issue = {1},
pages = {012335},
numpages = {17},
year = {2017},
% % month = {Jul},
publisher = {American Physical Society},
doi = {10.1103/PhysRevA.96.012335},
url = {https://link.aps.org/doi/10.1103/PhysRevA.96.012335}
}
@phdthesis{Prakash2014,
author = {Prakash, Anupam},
title = {Quantum Algorithms for Linear Algebra and Machine Learning},
school = {University of California, Berkeley},
year = {2014},
URL = {https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-211.html},
}
@article{H2,
title = "Improved quantum Fourier transform algorithm and applications",
author = "Hales, Lisa and Hallgren, Sean",
pages = "515--525",
url="https://pennstate.pure.elsevier.com/en/publications/improved-quantum-Fourier-transform-algorithm-and-applications",
booktitle = {2013 IEEE 54th Annual Symposium on Foundations of Computer Science},
year = {2000},
volume = {},
issn = {0272-5428},
pages = {515},
doi = {10.1109/SFCS.2000.892139},
url = {https://doi.ieeecomputersociety.org/10.1109/SFCS.2000.892139},
publisher = {IEEE Computer Society},
address = {Los Alamitos, CA, USA}
}
@INPROCEEDINGS{C5,
author={Cleve, R. and Watrous, J.},
booktitle={Proceedings 41st Annual Symposium on Foundations of Computer Science},
title={Fast parallel circuits for the quantum Fourier transform},
year={2000},
volume={},
number={},
pages={526-536},
doi={10.1109/SFCS.2000.892140},
ISSN={0272-5428},
% month={Nov},
}
@article{S4,
author = {Sriperumbudur, Bharath K. and Fukumizu, Kenji and Lanckriet, Gert R. G.},
title = {Universality, Characteristic Kernels and RKHS Embedding of Measures},
journal = {J. Mach. Learn. Res.},
issue_date = {2/1/2011},
volume = {12},
% % month = jul,
year = {2011},
issn = {1532-4435},
pages = {2389--2410},
numpages = {22},
url = {http://dl.acm.org/citation.cfm?id=1953048.2021077},
acmid = {2021077},
publisher = {JMLR.org},
}
@book{S5,
author = {Sch\"{o}lkopf, Bernhard and Smola, Alexander J.},
title = {Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond},
year = {2001},
isbn = {0262194759},
publisher = {MIT Press},
address = {Cambridge, MA, USA},
}
@article{D1,
title={Analysis of Langevin Monte Carlo via Convex Optimization},
author={Durmus, Alain and Majewski, Szymon and Miasojedow, Blazej},
journal={J. Mach. Learn. Res.},
year={2018},
volume={20},
pages={73:1-73:46}
}
@unpublished{A2,
author = {Aaronson, Scott and Rall, Patrick},
title = {Quantum Approximate Counting, Simplified},
arxivPrefix = {arxiv},
arxivId = {1908.10846},
URL = {https://arxiv.org/abs/1908.10846},
% month={Aug},
year = {2019},
}
@article{B2,
url = {https://www.nowpublishers.com/article/Details/MAL-050},
year = {2015},
volume = {8},
journal = {Foundations and Trends in Machine Learning},
title = {Convex Optimization: Algorithms and Complexity},
doi = {10.1561/2200000050},
issn = {1935-8237},
number = {3-4},
pages = {231-357},
author = {Bubeck, S\'{e}bastien}
}
@book{N1,
place={Springer Nature Switzerland AG},
series={Springer Optimization and Its Applications},
title={Lectures on Convex Optimization},
DOI={10.1007/978-3-319-91578-4},
publisher={Springer, Cham},
author={Nesterov, Yurii},
year={2018},
collection={Springer Optimization and Its Applications},
url={https://link.springer.com/book/10.1007\%2F978-3-319-91578-4}
}
@unpublished{Y1,
author = {Yu, Chao-Hua and Gao, Fei and Wen, Qiao-Yan},
title = {An improved quantum algorithm for ridge regression},
arxivPrefix = {arxiv},
arxivId = {1707.09524},
URL = {https://arxiv.org/abs/1707.09524},
% month={Jul},
year = {2017},
}
@incollection{R2,
title = {Random Features for Large-Scale Kernel Machines},
author = {Rahimi, Ali and Recht, Benjamin},
booktitle = {Advances in Neural Information Processing Systems 20},
editor = {J. C. Platt and D. Koller and Y. Singer and S. T. Roweis},
pages = {1177--1184},
year = {2008},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/3182-random-features-for-large-scale-kernel-machines.pdf}
}
@incollection{R3,
title = {Weighted Sums of Random Kitchen Sinks: Replacing minimisation with randomization in learning},
author = {Rahimi, Ali and Recht, Benjamin},
booktitle = {Advances in Neural Information Processing Systems 21},
editor = {D. Koller and D. Schuurmans and Y. Bengio and L. Bottou},
pages = {1313--1320},
year = {2009},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/3495-weighted-sums-of-random-kitchen-sinks-replacing-minimisation-with-randomization-in-learning.pdf}
}
@InProceedings{L1,
title = {Fastfood - Computing Hilbert Space Expansions in loglinear time},
author = {Le, Quoc and Sarlos, Tamas and Smola, Alexander},
booktitle = {Proceedings of the 30th International Conference on Machine Learning},
pages = {244--252},
year = {2013},
editor = {Sanjoy Dasgupta and David McAllester},
volume = {28},
number = {3},
series = {Proceedings of Machine Learning Research},
address = {Atlanta, Georgia, USA},
% % month = {17--19 Jun},
publisher = {PMLR},
pdf = {http://proceedings.mlr.press/v28/le13.pdf},
url = {http://proceedings.mlr.press/v28/le13.html},
}
@inproceedings{R4,
author = {Rakhlin, Alexander and Shamir, Ohad and Sridharan, Karthik},
title = {Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization},
booktitle = {Proceedings of the 29th International Coference on International Conference on Machine Learning},
series = {ICML'12},
year = {2012},
isbn = {978-1-4503-1285-1},
location = {Edinburgh, Scotland},
pages = {1571--1578},
numpages = {8},
url = {http://dl.acm.org/citation.cfm?id=3042573.3042774},
acmid = {3042774},
publisher = {Omnipress},
address = {USA},
arXivId={1109.5647},
arXivPrefix = {arXiv}
}
@book{B3,
author = {Boyd, Stephen and Vandenberghe, Lieven},
title = {Convex Optimization},
year = {2004},
isbn = {0521833787},
publisher = {Cambridge University Press},
address = {New York, NY, USA},
}
@InProceedings{H3,
title = {Tight analyses for non-smooth stochastic gradient descent},
author = {Harvey, Nicholas J.~A. and Liaw, Christopher and Plan, Yaniv and Randhawa, Sikander},
booktitle = {Proceedings of the Thirty-Second Conference on Learning Theory},
pages = {1579--1613},
year = {2019},
editor = {Beygelzimer, Alina and Hsu, Daniel},
volume = {99},
series = {Proceedings of Machine Learning Research},
address = {Phoenix, USA},
% % month = {25--28 Jun},
publisher = {PMLR},
pdf = {http://proceedings.mlr.press/v99/harvey19a/harvey19a.pdf},
url = {http://proceedings.mlr.press/v99/harvey19a.html},
}
@unpublished{J1,
author = {Jain, Prateek and Nagaraj, Dheeraj and Netrapalli, Praneeth},
title = {Making the Last Iterate of SGD Information Theoretically Optimal},
arxivPrefix = {arxiv},
arxivId = {1904.12443},
URL = {https://arxiv.org/abs/1904.12443},
% month={Apr},
year = {2019},
}
@unpublished{H4,
author = {Harvey, Nicholas J. A. and Liaw, Christopher and Randhawa, Sikander},
title = {Simple and optimal high-probability bounds for strongly-convex stochastic gradient descent},
arxivPrefix = {arxiv},
arxivId = {1909.00843},
URL = {https://arxiv.org/abs/1909.00843},
% month={Sep},
year = {2019},
}
@unpublished{harvey:hal-02070778,
TITLE = {{Integer multiplication in time O(n log n)}},
AUTHOR = {Harvey, David and Van Der Hoeven, Joris},
URL = {https://hal.archives-ouvertes.fr/hal-02070778},
YEAR = {2019},
journal = {Technical Report, HAL},
% % month = Mar,
PDF = {https://hal.archives-ouvertes.fr/hal-02070778/file/nlogn.pdf},
}
@book{berlinet2011reproducing,
title={Reproducing kernel Hilbert spaces in probability and statistics},
author={Berlinet, Alain and Thomas-Agnan, Christine},
year={2011},
publisher={Springer Science \& Business Media}
}
@article{PhysRevLett.109.050505,
title = {Quantum Algorithm for Data Fitting},
author = {Wiebe, Nathan and Braun, Daniel and Lloyd, Seth},
journal = {Phys. Rev. Lett.},
volume = {109},
issue = {5},
pages = {050505},
numpages = {5},
year = {2012},
% % month = {Aug},
publisher = {American Physical Society},
doi = {10.1103/PhysRevLett.109.050505},
url = {https://link.aps.org/doi/10.1103/PhysRevLett.109.050505}
}
@article{lloyd2016quantum,
title={Quantum algorithms for topological and geometric analysis of data},
author={Lloyd, Seth and Garnerone, Silvano and Zanardi, Paolo},
journal={Nature communications},
volume={7},
pages={10138},
year={2016},
publisher={Nature Publishing Group},
url={https://www.nature.com/articles/ncomms10138}
}
@article{PhysRevLett.113.130503,
title = {Quantum Support Vector Machine for Big Data Classification},
author = {Rebentrost, Patrick and Mohseni, Masoud and Lloyd, Seth},
journal = {Phys. Rev. Lett.},
volume = {113},
issue = {13},
pages = {130503},
numpages = {5},
year = {2014},
% % month = {Sep},
publisher = {American Physical Society},
doi = {10.1103/PhysRevLett.113.130503},
url = {https://link.aps.org/doi/10.1103/PhysRevLett.113.130503}
}
@unpublished{arXiv:1910.06151,
author ={Chia, Nai-Hui and Gily\'{e}n, Andr\'{a}s and Li, Tongyang and Lin, Han-Hsuan and Tang, Ewin and Wang, Chunhao},
title = {Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning},
arxivPrefix = {arxiv},
arxivId = {1910.06151},
URL = {https://arxiv.org/abs/1910.06151},
% month={Oct},
year = {2019},
}
@unpublished{arXiv:1910.05699,
author ={Jethwani, Dhawal and Le Gall, Fran\c{c}ois and Singh, Sanjay K.},
title = {Quantum-Inspired Classical Algorithms for Singular Value Transformation},
arxivPrefix = {arxiv},
arxivId = {1910.05699},
URL = {https://arxiv.org/abs/1910.05699},
% month={Oct},
year = {2019},
}
@Inbook{Zhang2012,
author="Zhang, Shengyu",
editor="Rozenberg, Grzegorz
and B{\"a}ck, Thomas
and Kok, Joost N.",
title="BQP-Complete Problems",
bookTitle="Handbook of Natural Computing",
year="2012",
publisher="Springer Berlin Heidelberg",
address="Berlin, Heidelberg",
pages="1545--1571",
isbn="978-3-540-92910-9",
doi="10.1007/978-3-540-92910-9_46",
url="https://doi.org/10.1007/978-3-540-92910-9_46"
}
@article{arute2019quantum,
title={Quantum supremacy using a programmable superconducting processor},
author={Arute, Frank and Arya, Kunal and Babbush, Ryan and Bacon, Dave and Bardin, Joseph C and Barends, Rami and Biswas, Rupak and Boixo, Sergio and Brandao, Fernando GSL and Buell, David A and others},
journal={Nature},
volume={574},
number={7779},
pages={505--510},
year={2019},
publisher={Nature Publishing Group},
url={https://www.nature.com/articles/s41586-019-1666-5}
}
@unpublished{deWolf2019notes,
author ={de Wolf, Ronald},
title = {Quantum Computing: Lecture Notes},
arxivPrefix = {arxiv},
arxivId = {1907.09415},
URL = {https://arxiv.org/abs/1907.09415},
year = {2019},
}
@ARTICLE{Shannon1949communication,
author={{Shannon},C. E.},
journal={Proceedings of the IRE},
title={Communication in the Presence of Noise},
year={1949},
volume={37},
number={1},
pages={10-21},
keywords={Electron tubes;Voltage;Bandwidth;Circuits;Shape;Klystrons;Frequency measurement;Gain measurement;Communication systems;Telephony},
doi={10.1109/JRPROC.1949.232969},
ISSN={2162-6634},
% month={Jan},
url={https://ieeexplore.ieee.org/abstract/document/1697831}
}
@article{PhysRevLett.100.160501,
title = {Quantum Random Access Memory},
author = {Giovannetti, Vittorio and Lloyd, Seth and Maccone, Lorenzo},
journal = {Phys. Rev. Lett.},
volume = {100},
issue = {16},
pages = {160501},
numpages = {4},
year = {2008},
% % month = {Apr},
publisher = {American Physical Society},
doi = {10.1103/PhysRevLett.100.160501},
url = {https://link.aps.org/doi/10.1103/PhysRevLett.100.160501}
}
@article{PhysRevA.78.052310,
title = {Architectures for a quantum random access memory},
author = {Giovannetti, Vittorio and Lloyd, Seth and Maccone, Lorenzo},
journal = {Phys. Rev. A},
volume = {78},
issue = {5},
pages = {052310},
numpages = {9},
year = {2008},
% % month = {Nov},
publisher = {American Physical Society},
doi = {10.1103/PhysRevA.78.052310},
url = {https://link.aps.org/doi/10.1103/PhysRevA.78.052310}
}
@article{jiang2019experimental,
title={Experimental realization of 105-qubit random access quantum memory},
author={Jiang, N and Pu, Y-F and Chang, W and Li, C and Zhang, S and Duan, L-M},
journal={npj Quantum Information},
volume={5},
number={1},
pages={28},
year={2019},
publisher={Nature Publishing Group},
url={https://www.nature.com/articles/s41534-019-0144-0}
}
@article{PhysRevLett.123.250501,
title = {Hardware-Efficient Quantum Random Access Memory with Hybrid Quantum Acoustic Systems},
author = {Hann, Connor T. and Zou, Chang-Ling and Zhang, Yaxing and Chu, Yiwen and Schoelkopf, Robert J. and Girvin, S. M. and Jiang, Liang},
journal = {Phys. Rev. Lett.},
volume = {123},
issue = {25},
pages = {250501},
numpages = {7},
year = {2019},
% % month = {Dec},
publisher = {American Physical Society},
doi = {10.1103/PhysRevLett.123.250501},
url = {https://link.aps.org/doi/10.1103/PhysRevLett.123.250501}
}
@unpublished{arXiv:1609.04747,
title = "An overview of gradient descent optimization algorithms",
author = "Ruder,Sebastian",
arxivPrefix = {arxiv},
arxivId = {1609.04747},
URL = {https://arxiv.org/abs/1609.04747},
% month={Sep},
year = {2016},
}
@article{biamonte2017quantum,
title={Quantum machine learning},
author={Biamonte, Jacob and Wittek, Peter and Pancotti, Nicola and Rebentrost, Patrick and Wiebe, Nathan and Lloyd, Seth},
journal={Nature},
volume={549},
number={7671},
pages={195},
year={2017},
publisher={Nature Publishing Group},
url={https://www.nature.com/articles/nature23474}
}
@article{dunjko2018machine,
doi = {10.1088/1361-6633/aab406},
url = {https://iopscience.iop.org/article/10.1088/1361-6633/aab406},
year = 2018,
% % month = {jun},
publisher = {{IOP} Publishing},
volume = {81},
number = {7},
pages = {074001},
author = {Vedran Dunjko and Hans J Briegel},
title = {Machine learning {\&} artificial intelligence in the quantum domain: a review of recent progress},
journal = {Reports on Progress in Physics},
}
@article{aaronson2015read,
title={Read the fine print},
author={Aaronson, Scott},
journal={Nature Physics},
volume={11},
number={4},
pages={291},
year={2015},
publisher={Nature Publishing Group},
url={https://www.nature.com/articles/nphys3272}
}
@book{proakis2001digital,
title={Digital signal processing: principles algorithms and applications},
author={Proakis, John G},
publisher = {Pearson Prentice Hall},
year = {2007},
address = {Upper Saddle River, N.J},
isbn = {978-0131873742}
}
@incollection{NIPS2016_6246,
title = {Orthogonal Random Features},
author = {Yu, Felix Xinnan X and Suresh, Ananda Theertha and Choromanski, Krzysztof M and Holtmann-Rice, Daniel N and Kumar, Sanjiv},
booktitle = {Advances in Neural Information Processing Systems 29},
editor = {D. D. Lee and M. Sugiyama and U. V. Luxburg and I. Guyon and R. Garnett},
pages = {1975--1983},
year = {2016},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/6246-orthogonal-random-features.pdf}
}
@incollection{carratino2018learning,
title = {Learning with SGD and Random Features},
author = {Carratino, Luigi and Rudi, Alessandro and Rosasco, Lorenzo},
booktitle = {Advances in Neural Information Processing Systems 31},
editor = {S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett},
pages = {10192--10203},
year = {2018},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/8222-learning-with-sgd-and-random-features.pdf}
}
@inproceedings{10.5555/2999611.2999698,
author = {Bach, Francis and Moulines, Eric},
title = {Non-Strongly-Convex Smooth Stochastic Approximation with Convergence Rate O(1/n)},
year = {2013},
publisher = {Curran Associates Inc.},
address = {Red Hook, NY, USA},
booktitle = {Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 1},
pages = {773–781},
numpages = {9},
location = {Lake Tahoe, Nevada},
series = {NIPS’13}
}
@article{JMLR:v18:16-595,
author = {Prateek Jain and Sham M. Kakade and Rahul Kidambi and Praneeth Netrapalli and Aaron Sidford},
title = {Parallelizing Stochastic Gradient Descent for Least Squares Regression: Mini-batching, Averaging, and Model Misspecification},
journal = {Journal of Machine Learning Research},
year = {2018},
volume = {18},
number = {223},
pages = {1-42},
url = {http://jmlr.org/papers/v18/16-595.html}
}
@article{10.5555/3122009.3176845,
author = {Dieuleveut, Aymeric and Flammarion, Nicolas and Bach, Francis},
title = {Harder, Better, Faster, Stronger Convergence Rates for Least-Squares Regression},
year = {2017},
issue_date = {January 2017},
publisher = {JMLR.org},
volume = {18},
number = {1},
issn = {1532-4435},
journal = {J. Mach. Learn. Res.},
% % month = jan,
pages = {3520–3570},
numpages = {51},
keywords = {accelerated gradient, least-squares regression, convex optimization, stochastic gradient, non-parametric estimation}
}
@incollection{NIPS2017_6914,
title = {Generalization Properties of Learning with Random Features},
author = {Rudi, Alessandro and Rosasco, Lorenzo},
booktitle = {Advances in Neural Information Processing Systems 30},
editor = {I. Guyon and U. V. Luxburg and S. Bengio and H. Wallach and R. Fergus and S. Vishwanathan and R. Garnett},
pages = {3215--3225},
year = {2017},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/6914-generalization-properties-of-learning-with-random-features.pdf}
}
@incollection{NIPS2018_7961,
title = {Streaming Kernel PCA with tilde O(sqrt n) Random Features},
author = {Ullah, Enayat and Mianjy, Poorya and Marinov, Teodor Vanislavov and Arora, Raman},
booktitle = {Advances in Neural Information Processing Systems 31},
editor = {S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett},
pages = {7311--7321},
year = {2018},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/7961-streaming-kernel-pca-with-tildeosqrtn-random-features.pdf}
}
@incollection{NIPS2017_6978,
title = {FALKON: An Optimal Large Scale Kernel Method},
author = {Rudi, Alessandro and Carratino, Luigi and Rosasco, Lorenzo},
booktitle = {Advances in Neural Information Processing Systems 30},
editor = {I. Guyon and U. V. Luxburg and S. Bengio and H. Wallach and R. Fergus and S. Vishwanathan and R. Garnett},
pages = {3888--3898},
year = {2017},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/6978-falkon-an-optimal-large-scale-kernel-method.pdf}
}
@incollection{NIPS2016_6180,
title = {Learning Kernels with Random Features},
author = {Sinha, Aman and Duchi, John C},
booktitle = {Advances in Neural Information Processing Systems 29},
editor = {D. D. Lee and M. Sugiyama and U. V. Luxburg and I. Guyon and R. Garnett},
pages = {1298--1306},
year = {2016},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/6180-learning-kernels-with-random-features.pdf}
}
@article{10.1137/S0097539795293172,
author = {Shor, Peter W.},
title = {Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer},
year = {1997},
issue_date = {October 1997},
publisher = {Society for Industrial and Applied Mathematics},
address = {USA},
volume = {26},
number = {5},
issn = {0097-5397},
url={https://epubs.siam.org/doi/10.1137/S0097539795293172},
doi = {10.1137/S0097539795293172},
journal = {SIAM J. Comput.},
% % month = oct,
pages = {1484–1509},
numpages = {26},
keywords = {discrete logarithms, algorithmic number theory, prime factorization, spin systems, foundations of quantum mechanics, Fourier transforms, quantum computers, Church’s thesis}
}
@Article{Mengoni2019,
author="Mengoni, Riccardo
and Di Pierro, Alessandra",
title="Kernel methods in Quantum Machine Learning",
journal="Quantum Machine Intelligence",
year="2019",
% month="Dec",
day="01",
volume="1",
number="3",
pages="65--71",
issn="2524-4914",
doi="10.1007/s42484-019-00007-4",
url="https://link.springer.com/article/10.1007/s42484-019-00007-4"
}
@article{10.5555/2946645.3007073,
author = {Haim Avron and Vikas Sindhwani and Jiyan Yang and Michael W. Mahoney},
title = {Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels},
journal = {Journal of Machine Learning Research},
year = {2016},
volume = {17},
number = {120},
pages = {1-38},
url = {http://jmlr.org/papers/v17/14-538.html}
}
@inproceedings{10.5555/3172077.3172095,
author = {Chang, Wei-Cheng and Li, Chun-Liang and Yang, Yiming and P\'{o}czos, Barnab\'{a}s},
title = {Data-driven Random Fourier Features using Stein Effect},
booktitle = {Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, {IJCAI-17}},
% pages = {1497--1503},
year = {2017},
doi = {10.24963/ijcai.2017/207},
url = {https://www.ijcai.org/Proceedings/2017/207},
}
@article{doi:10.1098/rspa.2017.0551,
author = {Ciliberto, Carlo and Herbster, Mark and Ialongo, Alessandro Davide and Pontil, Massimiliano and Rocchetto, Andrea and Severini, Simone and Wossnig, Leonard },
title = {Quantum machine learning: a classical perspective},
journal = {Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences},
volume = {474},
number = {2209},
pages = {20170551},
year = {2018},
doi = {10.1098/rspa.2017.0551},
URL = {https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2017.0551},
eprint = {https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2017.0551},
}
@inproceedings{10.5555/645529.657980,
author = {Smola, Alex J. and Sch\"{o}kopf, Bernhard},
title = {Sparse Greedy Matrix Approximation for Machine Learning},
year = {2000},
isbn = {1558607072},
publisher = {Morgan Kaufmann Publishers Inc.},
address = {San Francisco, CA, USA},
booktitle = {Proceedings of the Seventeenth International Conference on Machine Learning},
pages = {911–918},
numpages = {8},
series = {ICML ’00},
url={https://dl.acm.org/doi/10.5555/645529.657980}
}
@incollection{10.5555/3008751.3008847,
title = {Using the Nystr\"{o}m Method to Speed Up Kernel Machines},
author = {Williams, Christopher K. I. and Seeger, Matthias},
booktitle = {Advances in Neural Information Processing Systems 13},
editor = {T. K. Leen and T. G. Dietterich and V. Tresp},
pages = {682--688},
year = {2001},
publisher = {MIT Press},
url = {http://papers.nips.cc/paper/1866-using-the-nystrom-method-to-speed-up-kernel-machines.pdf}
}
@article{10.5555/944790.944812,
author = {Fine, Shai and Scheinberg, Katya},
title = {Efficient Svm Training Using Low-Rank Kernel Representations},
year = {2002},
issue_date = {March 2002},
publisher = {JMLR.org},
volume = {2},
issn = {1532-4435},
journal = {Journal of Machine Learning Research},
% % month = mar,
pages = {243–264},
numpages = {22},
url={http://www.jmlr.org/papers/v2/fine01a.html}
}
@incollection{NIPS2014_5238,
title = {Scalable Kernel Methods via Doubly Stochastic Gradients},
author = {Dai, Bo and Xie, Bo and He, Niao and Liang, Yingyu and Raj, Anant and Balcan, Maria-Florina F and Song, Le},
booktitle = {Advances in Neural Information Processing Systems 27},
editor = {Z. Ghahramani and M. Welling and C. Cortes and N. D. Lawrence and K. Q. Weinberger},
pages = {3041--3049},
year = {2014},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/5238-scalable-kernel-methods-via-doubly-stochastic-gradients.pdf}
}
@InProceedings{pmlr-v99-jain19a,
title = {Making the Last Iterate of SGD Information Theoretically Optimal},
author = {Jain, Prateek and Nagaraj, Dheeraj and Netrapalli, Praneeth},
booktitle = {Proceedings of the Thirty-Second Conference on Learning Theory},
pages = {1752--1755},
year = {2019},
editor = {Beygelzimer, Alina and Hsu, Daniel},
volume = {99},
series = {Proceedings of Machine Learning Research},
address = {Phoenix, USA},
% % month = {25--28 Jun},
publisher = {PMLR},
pdf = {http://proceedings.mlr.press/v99/jain19a/jain19a.pdf},
url = {http://proceedings.mlr.press/v99/jain19a.html},
}
@article{montanaro2016quantum,
title={Quantum algorithms: an overview},
author={Montanaro, Ashley},
journal={npj Quantum Information},
volume={2},
number={1},
pages={1--8},
year={2016},
publisher={Nature Publishing Group},
url={https://www.nature.com/articles/npjqi201523}
}
@incollection{NIPS2018_7598,
title = {But How Does It Work in Theory? Linear SVM with Random Features},
author = {Sun, Yitong and Gilbert, Anna and Tewari, Ambuj},
booktitle = {Advances in Neural Information Processing Systems 31},
editor = {S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett},
pages = {3379--3388},
year = {2018},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/7598-but-how-does-it-work-in-theory-linear-svm-with-random-features.pdf}