forked from meta-llama/llama-recipes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset_utils.py
77 lines (59 loc) · 2.36 KB
/
dataset_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
import importlib
from functools import partial
from pathlib import Path
import torch
from llama_recipes.datasets import (
get_grammar_dataset,
get_alpaca_dataset,
get_samsum_dataset,
)
def load_module_from_py_file(py_file: str) -> object:
"""
This method loads a module from a py file which is not in the Python path
"""
module_name = Path(py_file).name
loader = importlib.machinery.SourceFileLoader(module_name, py_file)
spec = importlib.util.spec_from_loader(module_name, loader)
module = importlib.util.module_from_spec(spec)
loader.exec_module(module)
return module
def get_custom_dataset(dataset_config, tokenizer, split: str):
if ":" in dataset_config.file:
module_path, func_name = dataset_config.file.split(":")
else:
module_path, func_name = dataset_config.file, "get_custom_dataset"
if not module_path.endswith(".py"):
raise ValueError(f"Dataset file {module_path} is not a .py file.")
module_path = Path(module_path)
if not module_path.is_file():
raise FileNotFoundError(f"Dataset py file {module_path.as_posix()} does not exist or is not a file.")
module = load_module_from_py_file(module_path.as_posix())
try:
return getattr(module, func_name)(dataset_config, tokenizer, split)
except AttributeError as e:
print(f"It seems like the given method name ({func_name}) is not present in the dataset .py file ({module_path.as_posix()}).")
raise e
DATASET_PREPROC = {
"alpaca_dataset": partial(get_alpaca_dataset),
"grammar_dataset": get_grammar_dataset,
"samsum_dataset": get_samsum_dataset,
"custom_dataset": get_custom_dataset,
}
def get_preprocessed_dataset(
tokenizer, dataset_config, split: str = "train"
) -> torch.utils.data.Dataset:
if not dataset_config.dataset in DATASET_PREPROC:
raise NotImplementedError(f"{dataset_config.dataset} is not (yet) implemented")
def get_split():
return (
dataset_config.train_split
if split == "train"
else dataset_config.test_split
)
return DATASET_PREPROC[dataset_config.dataset](
dataset_config,
tokenizer,
get_split(),
)