-
Notifications
You must be signed in to change notification settings - Fork 10
/
losses.py
97 lines (88 loc) · 4.07 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
"""
Implements the knowledge distillation loss
"""
import torch
from torch.nn import functional as F
from timm.loss import BinaryCrossEntropy
def ce_loss(logit_p, logit_q):
p = torch.softmax(logit_p, dim=1)
log_q = torch.log_softmax(logit_q, dim=1)
loss = (-p * log_q).sum(dim=1).mean()
return loss
class DistillationLoss(torch.nn.Module):
"""
This module wraps a standard criterion and adds an extra knowledge distillation loss by
taking a teacher model prediction and using it as additional supervision.
"""
def __init__(self, base_criterion: torch.nn.Module, teacher_model: torch.nn.Module,
distillation_type: str, alpha: float, tau: float, use_ce=False, distill_token=True):
super().__init__()
self.base_criterion = base_criterion
self.teacher_model = teacher_model
assert distillation_type in ['none', 'soft', 'hard']
self.distillation_type = distillation_type
self.alpha = alpha
self.tau = tau
self.use_ce = use_ce
self.distill_token = distill_token
def forward(self, inputs, outputs, labels):
"""
Args:
inputs: The original inputs that are feed to the teacher model
outputs: the outputs of the model to be trained. It is expected to be
either a Tensor, or a Tuple[Tensor, Tensor], with the original output
in the first position and the distillation predictions as the second output
labels: the labels for the base criterion
"""
outputs_kd = None
if self.distill_token:
if not isinstance(outputs, torch.Tensor):
# assume that the model outputs a tuple of [outputs, outputs_kd]
outputs, outputs_kd = outputs
else:
outputs_kd = outputs
base_loss = self.base_criterion(outputs, labels)
if self.distillation_type == 'none':
return base_loss
if outputs_kd is None:
raise ValueError("When knowledge distillation is enabled, the model is "
"expected to return a Tuple[Tensor, Tensor] with the output of the "
"class_token and the dist_token")
# don't backprop throught the teacher
with torch.no_grad():
teacher_outputs = self.teacher_model(inputs)
if self.distillation_type == 'soft':
if self.use_ce:
# distillation_loss = BinaryCrossEntropy(smoothing=0)(outputs_kd, teacher_outputs)
T = self.tau
distillation_loss = ce_loss(teacher_outputs / T, outputs_kd / T) * T * T
else:
T = self.tau
# taken from https://github.com/peterliht/knowledge-distillation-pytorch/blob/master/model/net.py#L100
# with slight modifications
distillation_loss = F.kl_div(
F.log_softmax(outputs_kd / T, dim=1),
F.log_softmax(teacher_outputs / T, dim=1),
reduction='sum',
log_target=True
) * (T * T) / outputs_kd.numel()
elif self.distillation_type == 'hard':
distillation_loss = F.cross_entropy(outputs_kd, teacher_outputs.argmax(dim=1))
loss = base_loss * (1 - self.alpha) + distillation_loss * self.alpha
return loss
class BCELossSmooth(torch.nn.Module):
def __init__(self, base_criterion, smooth=0):
super(BCELossSmooth, self).__init__()
self.base_criterion = base_criterion
self.smooth = smooth
def forward(self, inputs, outputs, labels):
batch_size, num_classes = outputs.shape
labels = labels.unsqueeze(1)
if self.smooth <= 0.0:
targets = torch.zeros(batch_size, num_classes).cuda().scatter_(1, labels, 1)
loss = self.base_criterion(outputs, targets)
else:
targets = torch.zeros(batch_size, num_classes).cuda().scatter_(1, labels, 1)
targets = (targets + self.smooth).clamp(0, 1)
loss = self.base_criterion(outputs, targets)
return loss