forked from rebeccak1/class
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ndrad21_noGamma.ini~
executable file
·745 lines (554 loc) · 29.5 KB
/
ndrad21_noGamma.ini~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*
* CLASS input parameter file *
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*
> This example of input file, intended for CLASS beginners, lists all
> possibilities with detailed comments. You can use a more concise version, in
> which only the arguments in which you are interested would appear. Only
> lines containing an equal sign not preceded by a sharp sign "#" are
> considered by the code. Hence, do not write an equal sign within a comment,
> the whole line would be interpreted as relevant input. Input files must have
> an extension ".ini".
----------------------------
----> background parameters:
----------------------------
1) Hubble parameter : either 'H0' in km/s/Mpc or 'h' or '100*theta_s' where the
latter is the peak scale parameter 100(ds_dec/da_dec) close to 1.042143
(default: 'h' set to 0.67556)
#H0 = 67.556
h =0.67556
#100*theta_s = 1.042143
2) photon density: either 'T_cmb' in K or 'Omega_g' or 'omega_g' (default:
'T_cmb' set to 2.7255)
T_cmb = 2.7255
#Omega_g =
#omega_g =
3) baryon density: either 'Omega_b' or 'omega_b' (default: 'omega_b' set to
0.022032)
#Omega_b =
omega_b = 0.022032
4) ultra-relativistic species / massless neutrino density: either 'N_ur' or
'Omega_ur' or 'omega_ur' (default: 'N_ur' set to 3.046) (note: instead of
'N_ur' you can pass equivalently 'N_eff', although this syntax is
deprecated) (one more remark: if you have respectively 1,2,3 massive neutrinos, if you stick to the default value T_ncdm equal to 0.71611, designed to give m/omega of 93.14 eV, and if you want to use N_ur to get N_eff=3.046 in the early universe, then you should pass here respectively 2.0328,1.0196,0.00641)
N_ur = 2.0328
#Omega_ur =
#omega_ur =
#N_drad = 0
N_drad = 0.21 #Omega0_drad = N_drad*7./8.*pow(4./11.,4./3.)*Omega0_g;
Gamma_drad = 0.0000002
5) density of cdm (cold dark matter): 'Omega_cdm' or 'omega_cdm' (default:
'omega_cdm' set to 0.12038)
#Omega_cdm =
omega_cdm = 0.12038
5b) density of dcdm+dr (decaying cold dark matter and its relativistic decay
radiation): 'Omega_dcdmdr' or 'omega_dcdmdr' (default: 'Omega_dcdmdr' set
to 0)
Omega_dcdmdr = 0.0
#omega_dcdmdr = 0.0
5c) decay constant of dcdm in km/s/Mpc, same unit as H0 above.
Gamma_dcdm = 0.0
6) all parameters describing the ncdm sector (i.e. any non-cold dark matter
relics, including massive neutrinos, warm dark matter, etc.):
-> 'N_ncdm' is the number of distinct species (default: set to 0)
N_ncdm = 1
-> 'use_ncdm_psd_files' is the list of N_ncdm numbers: 0 means 'phase-space
distribution (psd) passed analytically inside the code, in the mnodule
background.c, inside the function background_ncdm_distribution()'; 1 means
'psd passed as a file with at list two columns: first for q, second for
f_0(q)', where q is p/T_ncdm (default: only zeros)
#use_ncdm_psd_files = 0
-> if some of the previous values are equal to one, 'ncdm_psd_filenames' is
the list of names of psd files (as many as number of ones in previous entry)
ncdm_psd_filenames = psd_FD_single.dat
-> 'ncdm_psd_parameters' is an optional list of double parameters to describe
the analytic distribution function or to modify a p.s.d. passed as a file.
It is made available in the routine background_ncdm_distribution.
#ncdm_psd_parameters = Nactive, sin^2_12 ,s23 ,s13
ncdm_psd_parameters = 0.3 ,0.5, 0.05
The remaining parameters should be entered as a list of N_ncdm numbers
separated by commas:
-> 'Omega_ncdm' or 'omega_ncdm' or 'm_ncdm' in eV (default: all set to zero);
with only one of these inputs, CLASS computes the correct value of
the mass; if both (Omega_ncdm, m_ncdm) or (omega_ncdm, m_ncdm) are
passed, CLASS will renormalise the psd in order to fulfill both
conditions.
Passing zero in the list of m_ncdm's or Omeg_ncdm's means that for
this component, this coefficient is not imposed, and its value is
inferred from the other one.
m_ncdm = 0.06
Omega_ncdm =
-> 'T_ncdm' is the ncdm temperature in units of photon temperature
(default: set to 0.71611, which is slightly larger than the
instantaneous decoupling value (4/11)^(1/3); indeed, this default
value is fudged to give a ratio m/omega equal to 93.14 eV for
active neutrinos, as predicted by precise studies of active
neutrino decoupling, see hep-ph/0506164)
T_ncdm = 0.71611
-> 'ksi_ncdm' is the ncdm chemical potential in units of its own temperature
(default: set to 0)
ksi_ncdm =
-> 'deg_ncdm' is the degeneracy parameter multiplying the psd: 1 stands for
'one family', i.e. one particle + anti-particle (default: set to 1.0)
deg_ncdm =
7) curvature: 'Omega_k' (default: 'Omega_k' set to 0)
Omega_k = 0.
8a) Dark energy contributions. At least one out of three conditions must be satisfied:
i) 'Omega_Lambda' unspecified.
ii) 'Omega_fld' unspecified.
iii) 'Omega_scf' set to a negative value. [Will be refered to as
unspecified in the following text.]
The code will then use the first unspecified component to satisfy the
closure equation (sum_i Omega_i) equals (1 + Omega_k)
(default: 'Omega_fld' and 'Omega_scf' set to 0 and 'Omega_Lambda' inferred
by code)
# Omega_Lambda = 0.7
Omega_fld = 0
Omega_scf = 0
8b) equation of state parameter (p/rho equal to w0+wa(1-a/a0) ) and sound speed
of the fluid (this is the sound speed defined in the frame comoving with
the fluid, i.e. obeying to the most sensible physical definition)
w0_fld = -0.9
wa_fld = 0.
cs2_fld = 1
8c) Scalar field (scf) initial conditions from attractor solution (assuming
pure exponential potential). (default: yes)
attractor_ic_scf = yes
8d) Scalar field (scf) potential parameters and initial conditions. V equals
((\phi-B)^\alpha + A)exp(-lambda*phi), see
http://arxiv.org/abs/astro-ph/9908085.
#scf_parameters = [scf_lambda, scf_alpha, scf_A, scf_B, phi, phi_prime]
scf_parameters = 10.0, 0.0, 0.0, 0.0, 100.0, 0.0
If 'attractor_ic_scf' is set to 'no', the last two entries are assumed to be
the initial values of phi in units of the reduced planck mass m_Pl and the
conformal time derivative of phi in units of [m_Pl/Mpc]. (Note however that
CLASS determines the initial scale factor dynamically and the results might not
be as expected in some models.)
8e) Scalar field (scf) tuning parameter: If Omega_scf is negative, the
following index (0,1,2,...) in scf_parameters will be used for tuning:
scf_tuning_index = 0
9) scale factor today 'a_today' (arbitrary and irrelevant for most purposes)
(default: set to 1)
# a_today = 1.
--------------------------------
----> thermodynamics parameters:
--------------------------------
1) primordial Helium fraction 'YHe', e.g. 0.25; if set to 'BBN' or 'bbn', will
be inferred from Big Bang Nucleosynthesis (default: set to 'BBN')
YHe = BBN
2) 'recombination' algorithm set to 'RECFAST' or 'HyRec'
recombination = RECFAST
2) parametrization of reionization: 'reio_parametrization' must be one of
'reio_none' (no reionization), 'reio_camb' (like CAMB: one tanh() step for
hydrogen reionization one for second helium reionization), 'reio_bins_tanh'
(binned history x_e(z) with tanh() interpolation between input values),
'reio_half_tanh' (like 'reio_camb' excepted that we match the function xe(z)
from recombination with only half a tanh(z-z_reio))...
(default: set to 'reio_camb')
reio_parametrization = reio_camb
3.a.) if 'reio_parametrization' set to 'reio_camb' or 'reio_half_tanh': enter
one of 'z_reio' or 'tau_reio' (default: 'z_reio' set to 11.357 to get tau_reio of 0.0925), plus
'reionization_exponent', 'reionization_width',
'helium_fullreio_redshift', 'helium_fullreio_width'
(default: set to 1.5, 0.5, 3.5, 0.5)
z_reio = 11.357
#tau_reio = 0.0925
reionization_exponent = 1.5
reionization_width = 0.5
helium_fullreio_redshift = 3.5
helium_fullreio_width = 0.5
3.b.) if 'reio_parametrization' set to 'reio_bins_tanh': enter number of bins
and list of z_i and xe_i defining the free electron density at the center
of each bin. Also enter a dimensionless paramater regulating the
sharpness of the tanh() steps, independently of the bin width;
recommended sharpness is 0.3, smaller values will make steps too sharp,
larger values will make the step very progressive but with discontinuity
of x_e(z) derivative around z_i values.
(default: set to 0, blank, blank, 0.3)
binned_reio_num = 3
binned_reio_z = 8,12,16
binned_reio_xe = 0.8,0.2,0.1
binned_reio_step_sharpness = 0.3
4.a) in order to model energy injection from DM annihilation, specify a
parameter 'annihilation' corresponding to the energy fraction absorbed by
the gas times the DM cross section divided by the DM mass, (f <sigma*v> /
m_cdm), see e.g. 0905.0003, expressed here in units of m^3/s/Kg
(default: set to zero)
annihilation = 0.
4.b) you can model simple variations of the above quanity as a function of
redhsift. If 'annihilation_variation' is non-zero, the function F(z)
defined as (f <sigma*v> / m_cdm)(z) will be a parabola in log-log scale
between 'annihilation_zmin' and 'annihilation_zmax', with a curvature
given by 'annihilation_variation' (must be negative), and with a maximum
in 'annihilation_zmax'; it will be constant outside this range. To take DM
halos into account, specify the parameters 'annihilation_f_halo', the
amplitude of the halo contribution, and 'annihilation_z_halo', the
characteristic redshift of halos
(default: no variation, 'annihilation_variation' and 'annihilation_f_halo'
set to zero).
annihilation_variation = 0.
annihilation_z = 1000
annihilation_zmax = 2500
annihilation_zmin = 30
annihilation_f_halo= 20
annihilation_z_halo= 8
4.c) You can also state whether you want to use the on-the-spot approximation
(default: 'on the spot' is 'yes')
on the spot = yes
5) to model DM decay, specify a parameter 'decay' which is equal to the energy
fraction absorbed by the gas divided by the lifetime of the particle, see
e.g. 1109.6322, expressed here in 1/s
(default: set to zero)
decay = 0.
----------------------------------------------------
----> define which perturbations should be computed:
----------------------------------------------------
1.a) list of output spectra requested:
- 'tCl' for temperature Cls,
- 'pCl' for polarization Cls,
- 'lCl' for CMB lensing potential Cls,
- 'nCl' (or 'dCl') for density number count Cls,
- 'sCl' for galaxy lensing potential Cls,
- 'mPk' for total matter power spectrum P(k) infered from gravitational potential,
- 'dTk' (or 'mTk') for density transfer functions for each species,
- 'vTk' for velocity transfer function for each species.
By defaut, the code will try to compute the following cross-correlation Cls (if
available): temperature-polarisation, temperature-CMB lensing, polarization-CMB
lensing, and density-lensing. Other cross-correlations are not computed because
they would slow down the code considerably.
Can be left blank if you do not want to evolve cosmological perturbations at
all. (default: set to blanck, no perturbation calculation)
#output = tCl,pCl,lCl
output = tCl,pCl,lCl,mPk
#output = mPk,mTk
1.b) if you included 'tCl' in the list, you can take into account only some of
the terms contributing to the temperature spectrum: intrinsic temperature
corrected by Sachs-Wolfe ('tsw' or 'TSW'), early integrated Sachs-Wolfe
('eisw' or 'EISW'), late integrated Sachs-Wolfe ('lisw' or 'LISW'),
Doppler ('dop' or 'Dop'), polarisation contribution ('pol' or 'Pol'). Put
below the list of terms to be included
(defaut: if this field is not passed, all terms will be included)
#temperature contributions = tsw, eisw, lisw, dop, pol
1.c) if one of 'eisw' or 'lisw' is turned off, the code will read 'early/late
isw redshift', the split value of redshift z at which the isw is
considered as late or early (if this field is absent or left blank, by
default, 'early/late isw redshift' is set to 50)
#early/late isw redshift =
1.d) if you included 'nCl' (or 'dCl') in the list, you can take into account
only some of the terms contributing to the obsevable number count
fluctuation spectrum: matter density ('density'), redshift-space and
Doppler distortions ('rsd'), lensing ('lensing'), or gravitational
potential terms ('gr'). Put below the list of terms to be included
(defaut: if this field is not passed, only 'dens' will be included)
#number count contributions = density, rsd, lensing, gr
2) if you want an estimate of the non-linear P(k) and Cls, enter 'halofit' or
'Halofit' or 'HALOFIT' for Halofit; otherwise leave blank
(default: blank, linear P(k) and Cls)
non linear =
3) if you want to consider perturbed recombination, enter a word containing the
letter 'y' or 'Y'. CLASS will then compute the perturbation in the
ionization fraction x_e and the baryon temperature. The initial conformal
time will be small, therefore you should use the default integrator ndf15
(i.e. do not set 'evolver' to 0, otherwise the code will be slower).
(default: neglect perturbed recombination)
#perturbed recombination = yes
4) list of modes ('s' for scalars, 'v' for vectors, 't' for tensors). More than
one letter allowed, can be attached or separated by arbitrary characters;
letters can be small or capital.
(default: set to 's')
modes = s
#modes = s,t
5) relevant only if you ask for 'tCl, lCl' and/or 'pCl, lCl': if you want the
spectrum of lensed Cls, enter a word containing the letter 'y' or 'Y'
(default: no lensed Cls)
lensing = yes
6) which perturbations should be included in tensor calculations? write 'exact'
to include photons, ultra-relativistic species 'ur' and all non-cold dark
matter species 'ncdm'; write 'massless' to appriximate 'ncdm' as extra
relativistic species (good approximation if ncdm is still relativistic at
the time of recombination); write 'photons' to include only photons
(default: 'massless')
tensor method =
7) list of initial conditions for scalars ('ad' for adiabatic, 'bi' for baryon
isocurvature, 'cdi' for CDM isocurvature, 'nid' for neutrino density
isocurvature, 'niv' for neutrino velocity isocurvature). More than one of
these allowed, can be attached or separated by arbitrary characters; letters
can be small or capital.
(default: set to 'ad')
ic = ad
#ic = ad&bi&nid
8) gauge in which calculations are performed: 'sync' or 'synchronous' or
'Synchronous' for synchronous, 'new' or 'newtonian' or 'Newtonian' for
Newtonian/longitudinal gauge
(default: set to synchronous)
gauge = sync
---------------------------------------------
----> define primordial perturbation spectra:
---------------------------------------------
1) primordial spectrum type ('analytic_Pk' for an analytic smooth function with amplitude, tilt, running, etc.; analytic spectra with feature can also be added as a new type;'inflation_V' for a numerical computation of the inflationary primordial spectrum, through a full integration of the perturbation equations, given a parametrization of the potential V(phi) in the observable window, like in astro-ph/0703625; 'inflation_H' for the same, but given a parametrization of the potential H(phi) in the observable window, like in astro-ph/0710.1630; 'inflation_V_end' for the same, but given a parametrization of the potential V(phi) in the whole region between the observable part and the end of inflation; there is also an option 'two scales' in order to specify two amplitudes instead of one amplitude and one tilt, like in the isocurvature mode analysis of the Planck inflation paper (works also for adiabatic mode only; see details below, item 2.c); finally 'external_Pk' allows for the primordial spectrum to be computed externally by some piece of code, or to be read from a table, see 2.d). (default: set to 'analytic_Pk')
P_k_ini type = analytic_Pk
2) parameters related to one of the primordial spectrum types (will only be
read if they correspond to the type selected above)
2.a) for type 'analytic_Pk':
2.a.1) pivot scale in Mpc-1 (default: set to 0.05)
k_pivot = 0.05
2.a.2) scalar adiabatic perturbations: curvature power spectrum value at pivot scale ('A_s' or 'ln10^{10}A_s'), tilt at the same scale 'n_s', and tilt running 'alpha_s' (default: set 'A_s' to 2.215e-9, 'n_s' to 0.9619, 'alpha_s' to 0)
A_s = 2.215e-9
#ln10^{10}A_s = 3.0980
n_s = 0.9619
alpha_s = 0.
2.a.3) isocurvature/entropy perturbations: for each mode xx ('xx' being one of
'bi', 'cdi', 'nid', 'niv', corresponding to baryon, cdm, neutrino
density and neutrino velocity entropy perturbations), enter the
entropy-to-curvature ratio f_xx, tilt n_xx and running alpha_xx, all
defined at the pivot scale; e.g. f_cdi of 0.5 means S_cdi/R equal to
one half and (S_cdi/R)^2 to 0.25
(default: set each 'f_xx' to 1, 'n_xx' to 1, 'alpha_xx' to 0)
f_bi = 1.
n_bi = 1.5
f_cdi=1.
f_nid=1.
n_nid=2.
alpha_nid= 0.01
etc.
2.a.4) cross-correlation between different adiabatic/entropy mode: for each
pair (xx, yy) where 'xx' and 'yy' are one of 'ad', 'bi', 'cdi', 'nid',
'niv', enter the correlation c_xx_yy (parameter between -1 and 1,
standing for cosDelta, the cosine of the cross-correlation angle), the
tilt n_xx_yy of the function cosDelta(k), and its running alpha_xx_yy,
all defined at the pivot scale. So, for a pair of fully correlated
(resp. anti-correlated) modes, one should set (c_xx_yy, n_xx_yy,
alpha_xx_yy) to (1,0,0) (resp. (-1,0,0)
(default: set each 'c_xx_yy' to 0, 'n_xx_yy' to 0, 'alpha_xx_yy' to 0)
c_ad_bi = 0.5
#n_ad_bi = 0.1
c_ad_cdi = -1.
c_bi_nid = 1.
#n_bi_nid = -0.2
#alpha_bi_nid = 0.002
etc.
2.a.5) tensor mode (if any): tensor-to-scalar power spectrum ratio, tilt,
running at the pivot scale; if 'n_t' and/or 'alpha_t' is set to 'scc' or
'SCC' isntead of a numerical value, it will be inferred from the
self-consistency condition of single field slow-roll inflation: for n_t,
-r/8*(2-r/8-n_s); for alpha_t, r/8(r/8+n_s-1)
(default: set 'r' to 1, 'n_t' to 'scc', 'alpha_t' to 'scc')
r = 1.
n_t = scc
alpha_t = scc
2.b) for type 'inflation_V'
2.b.1) type of potential: 'polynomial' for a Taylor expansion of the potential around phi_pivot. Other shapes can easily be defined in primordial module.
potential = polynomial
2.b.2) for 'inflation_V' and 'polynomial': enter either the coefficients 'V_0', 'V_1', 'V_2', 'V_3', 'V_4' of the Taylor expansion (in units of Planck mass to appropriate power), or their ratios 'R_0', 'R_1', 'R_2', 'R_3', 'R_4' corresponding to (128pi/3)*V_0^3/V_1^2, V_1^2/V_0^2, V_2/V_0, V_1*V_3/V_0, V_1^2*V_4/V_0^3, or the potential-slow-roll parameters 'PSR_0', 'PSR_1', 'PSR_2', 'PSR_3', 'PSR_4', equal respectively to R_0, epsilon_V=R_1/(16pi), eta_V=R_2/(8pi), ksi_V=R_3/(8pi)^2, omega_V=R_4/(8pi)^3 (default: 'V_0' set to 1.25e-13, 'V_1' to 1.12e-14, 'V_2' to 6.95e-14, 'V_3' and 'V_4' to zero).
V_0=1.e-13
V_1=-1.e-14
V_2=7.e-14
V_3=
V_4=
#R_0=2.18e-9
#R_1=0.1
#R_2=0.01
#R_3=
#R_4=
#PSR_0 = 2.18e-9
#PSR_1 = 0.001989
#PSR_2 = 0.0003979
#PSR_3 =
#PSR_4 =
2.c) for 'inflation_H': enter either the coefficients 'H_0', 'H_1', 'H_2', 'H_3', 'H_4' of the Taylor expansion (in units of Planck mass to appropriate power), or the Hubble-slow-roll parameters 'HSR_0', 'HSR_1', 'HSR_2', 'HSR_3', 'HSR_4'
H_0=1.e-13
H_1=-1.e-14
H_2=7.e-14
H_3=
H_4=
#HSR_0 = 2.18e-9
#HSR_1 = 0.001989
#HSR_2 = 0.0003979
#HSR_3 =
#HSR_4 =
2.d) for type 'inflation_V_end':
2.d.1) value of the field at the minimum of the potential after inflation, or at a value in which you want to impose the end of inflation, in hybrid-like models. By convention, the code expects inflation to take place for values smaller than this value, with phi increasing with time (using a reflection symmetry, it is always possible to be in that case) (default: 'phi_end' set to 0)
phi_end =
2.d.2) shape of the potential. Refers to functions pre-coded in the primordail module (default: 'full_potential' set to 0)
full_potential = polynomial
2.d.3) parameters of the potential
Vparam0 =
Vparam1 =
Vparam2 =
Vparam3 =
Vparam4 =
2.d.4) how much (aH) increases between Hubble crossing for the pivot scale (during inflation) and the end of inflation (default: 50)
ln_aH_ratio = 50
2.e) for type 'two_scales' (currently this option works only for scalar modes, and either for pure adiabatic modes or adiabatic + one type of isocurvature):
2.e.1) two wavenumbers 'k1' and 'k2' in 1/Mpc, at which primordial amplitude
parameters will be given. The value of 'k_pivot' will not be used in
input but quantities at k_pivot will still be calculated and stored in
the primordial structure (no default value: compulsory input if 'P_k_ini
type' has been set to 'two_scales')
k1=0.002
k2=0.1
2.e.2) two amplitudes 'P_{RR}^1', 'P_{RR}^2' for the adiabatic primordial
spectrum (no default value: compulsory input if 'P_k_ini type' has been
set to 'two_scales')
P_{RR}^1 = 2.3e-9
P_{RR}^2 = 2.3e-9
2.e.3) if one isocurvature mode has been turned on ('ic' set e.g. to 'ad,cdi'
or 'ad,nid', etc.), enter values of the isocurvature amplitude
'P_{II}^1', 'P_{II}^2', and cross-correlation amplitude 'P_{RI}^1',
'|P_{RI}^2|' (see Planck paper on inflation for details on definitions)
P_{II}^1 = 1.e-11
P_{II}^2 = 1.e-11
P_{RI}^1 = -1.e-13
|P_{RI}^2| = 1.e-13
2.e.4) set 'special iso' to 'axion' or 'curvaton' for two particular cases:
'axion' means uncorrelated, n_ad equal to n_iso, 'curvaton' means fully
anti-correlated with f_iso<0 (in the conventions of the Planck inflation
paper this would be called fully correlated), n_iso equal to one; in
these two cases, the last three of the four paramneters in 2.c.3 will be
over-written give the input for 'P_{II}^1' (defaut: 'special_iso' left
blanck, code assumes general case described by four parameters of 2.c.3)
special_iso =
2.f) for type 'external_Pk' (see external documentation external_Pk/README.md
for more details):
2.f.1) Command generating the table. If the table is already generated, just
write "cat <table_file>". The table should have two columns (k, pk) if
tensors are not requested, or three columns (k, pks, pkt) if they are.
#command = python external_Pk/generate_Pk_example.py
#command = python external_Pk/generate_Pk_example_w_tensors.py
command = cat external_Pk/Pk_example.dat
#command = cat external_Pk/Pk_example_w_tensors.dat
2.f.2) If the table is not pregenerated, parameters to be passed to the
command, in the right order, starting from "custom1" and up to
"custom10". They must be real numbers.
custom1 = 0.05 # In the example command: k_pivot
custom2 = 2.215e-9 # In the example command: A_s
custom3 = 0.9624 # In the example command: n_s
custom4 = 2e-10 # In the example (with tensors) command: A_t
custom5 = -0.1 # In the example (with tensors) command: n_t
#custom6 = 0
#custom7 = 0
#custom8 = 0
#custom9 = 0
#custom10 = 0
-------------------------------------
----> define format of final spectra:
-------------------------------------
1) maximum l for CLs:
- 'l_max_scalars' for CMB scalars (temperature, polarization, cmb lensing potential),
- 'l_max_tensors' for CMB tensors (temperature, polarization)
- 'l_max_lss' for Large Scale Structure Cls (density, galaxy lensing potential)
Reducing 'l_max_lss' with respect to l_max_scalars reduces the execution time significantly
(default: set 'l_max_scalars' to 2500, 'l_max_tensors' to 500, 'l_max_lss' to 300)
l_max_scalars = 2500
l_max_tensors = 500
#l_max_lss = 600
2) maximum k in P(k), 'P_k_max_h/Mpc' in units of h/Mpc or 'P_k_max_1/Mpc' in
units of 1/Mpc. If scalar Cls are also requested, a minimum value is
automatically imposed (the same as in scalar Cls computation)
(default: set to 0.1h/Mpc)
P_k_max_h/Mpc = 10.
#P_k_max_1/Mpc = 0.7
3) value(s) 'z_pk' of redshift(s) for P(k,z) output file(s); can be ordered
arbitrarily, but must be separated by comas (default: set 'z_pk' to 0)
z_pk = 0
#z_pk = 0., 1.2, 3.5
4) if the code is interfaced with routines that need to interpolate P(k,z) at
various values of (k,z), enter 'z_max_pk', the maximum value of z at which
such interpolations are needed. (default: set to maximum value in above
'z_pk' input)
#z_max_pk = 10.
6) parameters for the the matter density number count (option 'nCl' (or 'dCl'))
or galaxy lensing potential (option 'sCl') Cls:
6a) enter here a description of the selection functions W(z) of each redshift
bin; selection can be set to 'gaussian', 'tophat' or 'dirac', then pass a
list of N mean redshifts in growing order separated by comas, and 1 or N
widths separated by comas. The width stands for one standard deviation of
the gaussian (in z space), or for the half-width of the top-hat. Finally,
non_diagonal sets the number of cross-correlation spectra that you want to
calculate: 0 means only auto-correlation, 1 means only adjacent bins, and
number of bins minus one means all correlations (default: set to
'gaussian',1,0.1,0)
selection=gaussian
selection_mean = 0.98,0.99,1.0,1.1,1.2
selection_width = 0.1
non_diagonal=4
6b) It is possible to multiply the window function W(z) by a selection function
'dNdz' (number of objects per redshift interval). Type the name of the file
containing the redshift in the first column and the number of objects in
the second column (do not call it 'analytic*'). Set to 'analytic' to use
instead the analytic expression from arXiv:1004.4640 (this function can be
tuned in the module transfer.c, in the subroutine transfer_dNdz_analytic).
Leave blank to use a uniform distribution (default).
dNdz_selection =
6c) It is possible to consider source number counts evolution. Type the name of
the file containing the redshift on the first column and the number of
objects on the second column (do not call it 'analytic*'). Set to
'analytic' to use instead the analytic expression from Eq. 48 of
arXiv:1105.5292. Leave blank to use constant comoving number densities
(default).
dNdz_evolution =
6d) mutiply the density by a constant 'bias' factor (default: 'bias' set to one)
bias = 1.
6e) consider a constant magnification bias factor (default: 's_bias' set to zero)
s_bias = 0.
7a) file name root 'root' for all output files (if Cl requested, written to
'<root>cl.dat'; if P(k) requested, written to '<root>pk.dat'; plus similar
files for scalars, tensors, pairs of initial conditions, etc.; if file with
input parameters requested, written to '<root>parameters.ini') (default:
the input module sets automatically 'root' to 'output/<thisfilename>N_',
where N is the first available integer number, starting from 00, to avoid
erasing the output of previous runs)
#root = output/test_
7b) do you want headers at the beginning of each output file (giving precisions
on the output units/ format) ? If 'headers' set to something containing the
letter 'y' or 'Y', headers written, otherwise not written
(default: written)
headers = yes
7c) in all output files, do you want columns to be normalized and ordered with
the default CLASS definitions or with the CAMB definitions (often idential
to the CMBFAST one) ? Set 'format' to either 'class', 'CLASS', 'camb' or
'CAMB' (default: 'class')
format = class
7d) Do you want to write a table of background quantitites in a file? This will
include H, densities, Omegas, various cosmological distances, sound
horizon, etc., as a function of conformal time, proper time, scale factor.
File created if 'write background' set to something containing the letter
'y' or 'Y', file written, otherwise not written (default: not written)
write background = no
7e) Do you want to write a table of thermodynamics quantitites in a file? File
is created if 'write thermodynamics' is set to something containing the
letter 'y' or 'Y'. (default: not written)
write thermodynamics = no
7f) Do you want to write a table of perturbations to files for certain
wavenumbers k? Dimension of k is 1/Mpc. The actual wave numbers are chosen
such that they are as close as possible to the requested k-values.
k_output_values = #0.01, 0.1, 0.0001
7g) Do you want to write the primordial scalar(/tensor) spectrum in a file,
with columns k [1/Mpc], P_s(k) [dimensionless], ( P_t(k) [dimensionless])?
File created if 'write primordial' set to something containing the letter
'y' or 'Y', file written, otherwise not written (default: not written)
write primordial = no
7h) Do you want to have all input/precision parameters which have been read
written in file '<root>parameters.ini', and those not written in file
'<root>unused_parameters' ? If 'write parameters' set to something
containing the letter 'y' or 'Y', file written, otherwise not written
(default: not written)
write parameters = yeap
7i) Do you want a warning written in the standard output when an input
parameter or value could not be interpreted ? If 'write warnings' set to
something containing the letter 'y' or 'Y', warnings written, otherwise not
written (default: not written)
write warnings =
----------------------------------------------------
----> amount of information sent to standard output:
----------------------------------------------------
Increase integer values to make each module more talkative (default: all set to 0)
input_verbose = 2
background_verbose = 3
thermodynamics_verbose = 2
perturbations_verbose = 3
transfer_verbose = 2
primordial_verbose = 2
spectra_verbose = 2
nonlinear_verbose = 2
lensing_verbose = 2
output_verbose = 2