-
Notifications
You must be signed in to change notification settings - Fork 25
/
data_helper.py
269 lines (229 loc) · 10.9 KB
/
data_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import os
import pdb
import pickle
import re
from collections import defaultdict
from itertools import chain
import chakin
import numpy as np
import scipy.sparse as sp
from gensim.models import KeyedVectors
from gensim.models.wrappers.fasttext import FastText
from sklearn.metrics import classification_report, f1_score
from sklearn.preprocessing import MultiLabelBinarizer
from tqdm import tqdm
# sequence operation
# =========================================================
def clean_str(string):
string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " \( ", string)
string = re.sub(r"\)", " \) ", string)
string = re.sub(r"\?", " \? ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()
# read data from text file
# =========================================================
def make_data_list(data, kind_of_data, tree_info, max_sen_len, vocab, catgy, article_id, useWords):
data_list = []
for line in tqdm(data,desc="Loading " + kind_of_data + " data"):
tmp_dict = dict()
line = line[:-1]
tmp_dict['text'] = ' '.join(clean_str(' '.join(line.split("\t")[1].split(" "))).split(" ")[:useWords])
[vocab[word] for word in tmp_dict['text'].split(" ")]
tmp_dict['num_words'] = len(tmp_dict['text'].split(" "))
max_sen_len = max(max_sen_len, tmp_dict['num_words'])
tmp_dict['split'] = kind_of_data
tmp_dict['hie_info'] = list(set([tree_info[cat] for cat in line.split("\t")[0].split(",")]))
tmp_dict['catgy'] = [cat for cat in line.split("\t")[0].split(",")]
[catgy[cat] for cat in line.split("\t")[0].split(",")]
tmp_dict['id'] = str(article_id)
article_id += 1
data_list.append(tmp_dict)
del tmp_dict
return data_list, max_sen_len, vocab, catgy, article_id
# read data
# =========================================================
def data_load(train, valid, test, tree_info, use_words):
vocab = defaultdict( lambda: len(vocab) )
catgy = defaultdict( lambda: len(catgy) )
article_id = 0
max_sen_len = 0
train_list, max_sen_len, vocab, catgy, article_id = make_data_list(train, 'train', tree_info, max_sen_len, vocab, catgy, article_id, use_words)
valid_list, max_sen_len, vocab, catgy, article_id = make_data_list(valid, 'valid', tree_info, max_sen_len, vocab, catgy, article_id, use_words)
test_list, max_sen_len, vocab, catgy, article_id = make_data_list(test, 'test', tree_info, max_sen_len, vocab, catgy, article_id, use_words)
class_dim = len(catgy)
data = {}
data['train'] = train_list
data['test'] = test_list
data['valid'] = valid_list
data['vocab'] = vocab
data['catgy'] = catgy
data['max_sen_len'] = max_sen_len
data['class_dim'] = class_dim
return data
# read word embedding
# =========================================================
def embedding_weights_load(words_map,embedding_weights_path):
pre_trained_embedding = None
try:
model = FastText.load_fasttext_format(embedding_weights_path)
pre_trained_embedding = "bin"
except:
print ("fastText binary file (.bin) is not found!")
if os.path.exists("./Word_embedding/wiki.en.vec"):
print ("Using wikipedia(en) pre-trained word vectors.")
else:
print ("Downloading wikipedia(en) pre-trained word vectors.")
chakin.download(number=2, save_dir="./Word_embedding")
print ("Loading vectors...")
if os.path.exists("./Word_embedding_model.pkl"):
with open("./Word_embedding_model.pkl", mode="rb") as f:
model = pickle.load(f)
else:
model = KeyedVectors.load_word2vec_format('./Word_embedding/wiki.en.vec')
with open("Word_embedding_model.pkl", mode="wb") as f:
pickle.dump(model, f)
pre_trained_embedding = "txt"
vocab_size = len(words_map)
word_dimension = model['a'].shape[0]
w = np.zeros((vocab_size,word_dimension),dtype=np.float32)
for k,v in words_map.items():
word = k
word_number = v
try:
w[word_number][:] = model[word]
except KeyError as e:
if pre_trained_embedding == "bin":
w[word_number][:] = model.seeded_vector(word)
else:
np.random.seed(word_number)
w[word_number][:] = np.random.uniform(-0.25, 0.25, word_dimension)
return w
# Conversion from network output to label
# =========================================================
def get_catgy_mapping(network_output_order_list, test_labels, prediction,current_depth):
predict_result = []
grand_labels = []
for i in range(len(test_labels)):
predict_result.append([])
grand_labels.append([])
class_dim = prediction.shape[1]
row_idx, col_idx, val_idx = [], [], []
for i in range(len(test_labels)):
l_list = list(set(test_labels[i]))
for y in l_list:
row_idx.append(i)
col_idx.append(y)
val_idx.append(1)
m = max(row_idx) + 1
n = max(col_idx) + 1
n = max(class_dim, n)
test_labels = sp.csr_matrix((val_idx, (row_idx, col_idx)), shape=(m, n), dtype=np.int8).todense()
np_orderList = np.array(network_output_order_list)
for i,j in tqdm(enumerate(prediction), desc="Generating predict labels..."):
one_hots = np.where(j == 1)[0]
if len(one_hots) >= 1:
predict_result[i] = np_orderList[one_hots].tolist()
output_grand_truth_file_name = "CNN/RESULT/grand_truth_" + current_depth + ".csv"
with open(output_grand_truth_file_name, 'w') as f:
f.write(','.join(network_output_order_list)+"\n")
with open(output_grand_truth_file_name, 'a') as f:
for i,j in tqdm(enumerate(test_labels), desc="Generating grand truth labels..."):
one_hots = np.where(j == 1)[1]
if len(one_hots) >= 1:
grand_labels[i] = np_orderList[one_hots].tolist()
f.write(",".join(grand_labels[i])+"\n")
else:
f.write("\n")
return grand_labels,predict_result
# Write results to a file
# =========================================================
def write_out_prediction(GrandLabels, PredResult, input_data_dic):
# Writing out prediction
# ===================================================
print ("-"*50)
print ("Writing out prediction...")
test_data = input_data_dic['test']
result_file = open("./CNN/RESULT/Prediction.txt", mode="w")
result_file.write("Grand-truth-label\tPrediction-labels\tInput-text\n")
for g,p,t in zip(GrandLabels, PredResult, test_data):
result_file.write("{}\t{}\t{}\n".format(','.join(sorted(g)), ','.join(sorted(p)), t['text']))
result_file.close()
# conversion of data
#========================================================
# conversion from text data to ndarray
# =========================================================
def build_input_sentence_data(sentences):
x = np.array(sentences)
return x
# conversion from sequence label to the number
# =========================================================
def build_input_label_data(labels, class_order):
from sklearn.preprocessing import MultiLabelBinarizer
from itertools import chain
bml = MultiLabelBinarizer(classes=class_order, sparse_output=True)
indexes = sp.find(bml.fit_transform(labels))
y = []
for i in range(len(labels)):
y.append([])
for i,j in zip(indexes[0], indexes[1]):
y[i].append(j)
return y
# padding operation
# =========================================================
def pad_sentences(sentences, padding_word=-1, max_length=50):
sequence_length = max(max(len(x) for x in sentences), max_length)
padded_sentences = []
for i in range(len(sentences)):
sentence = sentences[i]
if len(sentence) < max_length:
num_padding = sequence_length - len(sentence)
new_sentence = sentence + [padding_word] * num_padding
else:
new_sentence = sentence[:max_length]
padded_sentences.append(new_sentence)
return padded_sentences
# conversion from documents and labels to the numbers
# =========================================================
def build_problem(learning_categories, depth, input_data_dic):
train_data = input_data_dic['train']
validation_data = input_data_dic['valid']
test_data = input_data_dic['test']
vocab = input_data_dic['vocab']
max_sen_len = input_data_dic['max_sen_len']
if depth == "flat":
trn_text = [[vocab[word] for word in doc['text'].split()] for doc in train_data]
trn_labels = [doc['catgy'] for doc in train_data]
val_text = [[vocab[word] for word in doc['text'].split()] for doc in validation_data]
val_labels = [doc['catgy'] for doc in validation_data]
tst_text = [[vocab[word] for word in doc['text'].split()] for doc in test_data]
tst_labels = [doc['catgy'] for doc in test_data]
else:
layer = int(depth[:-2])
trn_text = [[vocab[word] for word in doc['text'].split()] for doc in train_data if (layer in doc['hie_info']) or ((layer-1) in doc['hie_info'])]
trn_labels = [list( set(doc['catgy']) & set(learning_categories)) for doc in train_data if (layer in doc['hie_info']) or ((layer-1) in doc['hie_info'])]
val_text = [[vocab[word] for word in doc['text'].split()] for doc in validation_data if (layer in doc['hie_info']) or ((layer-1) in doc['hie_info'])]
val_labels = [list( set(doc['catgy']) & set(learning_categories)) for doc in validation_data if (layer in doc['hie_info']) or ((layer-1) in doc['hie_info'])]
tst_text = [[vocab[word] for word in doc['text'].split()] for doc in test_data]
tst_labels = [list( set(doc['catgy']) & set(learning_categories)) if layer in doc['hie_info'] else [] for doc in test_data]
trn_padded = pad_sentences(trn_text, max_length=max_sen_len)
val_padded = pad_sentences(val_text, max_length=max_sen_len)
tst_padded = pad_sentences(tst_text, max_length=max_sen_len)
x_trn = build_input_sentence_data(trn_padded)
x_val = build_input_sentence_data(val_padded)
x_tst = build_input_sentence_data(tst_padded)
y_trn = build_input_label_data(trn_labels,learning_categories)
y_val = build_input_label_data(val_labels, learning_categories)
y_tst = build_input_label_data(tst_labels, learning_categories)
return x_trn, y_trn, x_val, y_val, x_tst, y_tst
# conversion from the number to an ordinal number
# =========================================================
def order_n(i): return {1:"1st", 2:"2nd", 3:"3rd"}.get(i) or "%dth"%i