forked from jainaman224/Algo_Ds_Notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Ford_Fulkerson_Method.py
86 lines (77 loc) · 3.14 KB
/
Ford_Fulkerson_Method.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# Ford Fulkerson MAx Flow Python Implementation
# Referred from: Wikipiedia
class Edge(object):
def __init__(self, u, v, w):
self.source = u
self.sink = v
self.capacity = w
def __repr__(self):
return "%s->%s:%s" % (self.source, self.sink, self.capacity)
class FlowNetwork(object):
def __init__(self):
self.adj = {}
self.flow = {}
def add_vertex(self, vertex):
self.adj[vertex] = []
def get_edges(self, v):
return self.adj[v]
def add_edge(self, u, v, w=0):
if u == v:
raise ValueError("u == v")
edge = Edge(u,v,w)
redge = Edge(v,u,0)
edge.redge = redge
redge.redge = edge
self.adj[u].append(edge)
self.adj[v].append(redge)
self.flow[edge] = 0
self.flow[redge] = 0
def find_path(self, source, sink, path):
if source == sink:
return path
for edge in self.get_edges(source):
residual = edge.capacity - self.flow[edge]
if residual > 0 and edge not in path:
result = self.find_path( edge.sink, sink, path + [edge])
if result != None:
return result
def max_flow(self, source, sink):
path = self.find_path(source, sink, [])
while path != None:
residuals = [edge.capacity - self.flow[edge] for edge in path]
flow = min(residuals)
for edge in path:
self.flow[edge] += flow
self.flow[edge.redge] -= flow
path = self.find_path(source, sink, [])
return sum(self.flow[edge] for edge in self.get_edges(source))
if __name__ != "":
g = FlowNetwork()
[g.add_vertex(v) for v in "sopqrt"]
g.add_edge('s','o',3)
g.add_edge('s','p',3)
g.add_edge('o','p',2)
g.add_edge('o','q',3)
g.add_edge('p','r',2)
g.add_edge('r','t',3)
g.add_edge('q','r',4)
g.add_edge('q','t',2)
print "The maximum possible flow is: " + str(g.max_flow('s','t'))
# Output For Given Graph: The maximum possible flow is: 5
#
# +------+ +------+
# 3/3 | | 3/3 | | 2/2
# +----------> o +---------------------------> q +--------+
# | | | | | |
# | +------+ +------+ |
# +-----+ | | +--v--+
# | | | | | |
# | s | |0/2 1/4 | t |
# | | | | | |
# +-----+ | | +-----+
# | | | ^
# | +---v--+ +---v--+ |
# | | | | | |
# +----------> p +---------------------------> r +--------+
# 2/3 | | 2/2 | | 3/3
# +------+ +------+