-
Notifications
You must be signed in to change notification settings - Fork 20
/
train.lua
executable file
·292 lines (247 loc) · 8.85 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
--
-- Copyright (c) 2016, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
-- The training loop and learning rate schedule
--
require 'hdf5'
require 'image'
require 'itorch'
require 'nn'
local optim = require 'optim'
local M = {}
local Trainer = torch.class('resnet.Trainer', M)
function Trainer:__init(model, criterion, opt, optimState)
self.model = model
self.criterion = criterion
-- self.optimState = optimState or {
-- learningRate = opt.LR,
-- learningRateDecay = 0.0,
-- momentum = opt.momentum,
-- nesterov = true,
-- dampening = 0.0,
-- weightDecay = opt.weightDecay,
-- }
if opt.optim == 'rmsprop' then
self.optimState = optimState or {
learningRate = opt.LR,
alpha = 0.8,
epsilon = 1e-8
}
elseif opt.optim == 'adagrad' then
self.optimState = optimState or {
learningRate = opt.LR,
epsilon = 1e-8
}
elseif opt.optim == 'sgd' then
self.optimState = optimState or {
learningRate = opt.LR,
learningRateDecay = 0.0,
momentum = opt.momentum,
nesterov = true,
dampening = 0.0,
weightDecay = opt.weightDecay,
}
elseif opt.optim == 'adam' then
self.optimState = optimState or {
learningRate = opt.LR,
alpha = 0.8,
beta = 0.999,
epsilon = 1e-8
}
else
error('Optim method is not implemented.')
end
self.opt = opt
self.params, self.gradParams = model:getParameters()
print('total number of parameters : ', self.params:nElement())
end
function Trainer:train(epoch, dataloader)
-- Trains the model for a single epoch
self.optimState.learningRate = self:learningRate(epoch)
local timer = torch.Timer()
local dataTimer = torch.Timer()
local function feval()
return self.criterion.output, self.gradParams
end
local trainSize = dataloader:size()
local top1Sum, top5Sum, lossSum = 0.0, 0.0, 0.0
local N = 0
print('=> Training epoch # ' .. epoch)
-- set the batch norm to training mode
self.model:training()
self.model:forget()
for n, sample in dataloader:run() do
local dataTime = dataTimer:time().real
-- Copy input and target to the GPU
self:copyInputs(sample)
-- multiple output loss
local target
if self.opt.sequenceOut then
local labels = self.target
target = {}
for i = 1, self.opt.seqLength do
target[i] = labels
end
else
target = self.target
end
local output, batchSize
if self.opt.sequenceOut then
output = self.model:forward(self.input)
batchSize = output[1]:size(1)
else
output = self.model:forward(self.input):float()
batchSize = output:size(1)
end
-- print(#output)
local loss = self.criterion:forward(self.model.output, target)
-- print(#self.model.output)
self.model:zeroGradParameters()
self.criterion:backward(self.model.output, target)
self.model:backward(self.input, self.criterion.gradInput)
-- optim.sgd(feval, self.params, self.optimState)
if self.opt.optim == 'rmsprop' then
optim.rmsprop(feval, self.params, self.optimState)
elseif self.opt.optim == 'adagrad' then
optim.adagrad(feval, self.params, self.optimState)
elseif self.opt.optim == 'sgd' then
optim.sgd(feval, self.params, self.optimState)
elseif self.opt.optim == 'adam' then
optim.adam(feval, self.params, self.optimState)
else
error('Optim method is not implemented.')
end
local top1, top5 = self:computeScore(output, sample.target, 1)
top1Sum = top1Sum + top1*batchSize
top5Sum = top5Sum + top5*batchSize
lossSum = lossSum + loss*batchSize
N = N + batchSize
print((' | Epoch: [%d][%d/%d] Time %.3f Data %.3f LR %.0e Err %1.4f top1 %7.3f top5 %7.3f'):format(
epoch, n, trainSize, timer:time().real, dataTime, self.optimState.learningRate, loss, top1, top5))
-- check that the storage didn't get changed due to an unfortunate getParameters call
assert(self.params:storage() == self.model:parameters()[1]:storage())
timer:reset()
dataTimer:reset()
end
return top1Sum / N, top5Sum / N, lossSum / N
end
function Trainer:test(epoch, dataloader)
-- Computes the top-1 and top-5 err on the validation set
-- local model_parameters, model_gradParameters = self.model:getParameters()
-- print('total number of parameters : ', model_parameters:nElement())
local timer = torch.Timer()
local dataTimer = torch.Timer()
local size = dataloader:size()
local nCrops = self.opt.tenCrop and 10 or 1
local top1Sum, top5Sum = 0.0, 0.0
local N = 0
self.model:evaluate()
predicted = {}
acc_total = 0
for n, sample in dataloader:run() do
local dataTime = dataTimer:time().real
-- Copy input and target to the GPU
self:copyInputs(sample)
-- multiple output loss
local target
if self.opt.sequenceOut then
local labels = self.target
target = {}
for i = 1, self.opt.seqLength do
target[i] = labels
end
else
target = self.target
end
local output, batchSize
if self.opt.sequenceOut then
output = self.model:forward(self.input)
batchSize = output[1]:size(1) / nCrops
else
output = self.model:forward(self.input):float()
batchSize = output:size(1) / nCrops
end
local loss = self.criterion:forward(self.model.output, target)
local top1, top5, pred = self:computeScore(output, sample.target, nCrops)
-- for ii = 1, pred:size()[1] do
-- pred_idx = N + ii
-- print (pred_idx, pred[ii][1], sample.target[ii])
-- if pred[ii][1] == sample.target[ii] then
-- acc_total = acc_total + 1
-- end
-- predicted[tostring(pred_idx)] = torch.Tensor({pred[ii][1]})
-- end
top1Sum = top1Sum + top1*batchSize
top5Sum = top5Sum + top5*batchSize
N = N + batchSize
print((' | Test: [%d][%d/%d] Time %.3f Data %.3f top1 %7.3f (%7.3f) top5 %7.3f (%7.3f)'):format(
epoch, n, size, timer:time().real, dataTime, top1, top1Sum / N, top5, top5Sum / N))
timer:reset()
dataTimer:reset()
end
self.model:training()
print((' * Finished epoch # %d top1: %7.3f top5: %7.3f\n'):format(
epoch, top1Sum / N, top5Sum / N))
-- print (acc_total)
-- local predFile = hdf5.open(string.format('sm1_predicted_Iter%d.h5', self.opt.seqLength), 'w')
-- predFile:write('features', predicted)
-- predFile:close()
return top1Sum / N, top5Sum / N
end
function Trainer:computeScore(output_t, target, nCrops)
local output
if self.opt.sequenceOut then
output = output_t[self.opt.seqLength]
else
output = output_t
end
if nCrops > 1 then
-- Sum over crops
output = output:view(output:size(1) / nCrops, nCrops, output:size(2))
--:exp()
:sum(2):squeeze(2)
end
-- Coputes the top1 and top5 error rate
local batchSize = output:size(1)
local _ , predictions = output:float():sort(2, true) -- descending
-- Find which predictions match the target
local correct = predictions:eq(
target:long():view(batchSize, 1):expandAs(output))
-- Top-1 score
local top1 = 1.0 - (correct:narrow(2, 1, 1):sum() / batchSize)
-- Top-5 score, if there are at least 5 classes
local len = math.min(5, correct:size(2))
local top5 = 1.0 - (correct:narrow(2, 1, len):sum() / batchSize)
return top1 * 100, top5 * 100, predictions
end
function Trainer:copyInputs(sample)
-- Copies the input to a CUDA tensor, if using 1 GPU, or to pinned memory,
-- if using DataParallelTable. The target is always copied to a CUDA tensor
self.input = self.input or (self.opt.nGPU == 1
and torch.CudaTensor()
or cutorch.createCudaHostTensor())
self.target = self.target or torch.CudaTensor()
self.input:resize(sample.input:size()):copy(sample.input)
self.target:resize(sample.target:size()):copy(sample.target)
end
function Trainer:learningRate(epoch)
-- Training schedule
local decay = 0
if self.opt.dataset == 'imagenet' then
decay = math.floor((epoch - 1) / 30)
elseif self.opt.dataset == 'cifar10' then
decay = epoch >= 122 and 2 or epoch >= 81 and 1 or 0
elseif self.opt.dataset == 'cifar100' then
-- decay = epoch >= 62 and 2 or epoch >= 21 and 1 or 0
decay = epoch >= 122 and 2 or epoch >= 81 and 1 or 0
-- decay = epoch >= 192 and 2 or epoch >= 191 and 1 or 0
end
return self.opt.LR * math.pow(0.1, decay)
-- return self.opt.LR * math.pow(0.5, decay)
end
return M.Trainer