diff --git a/doc/source/tune/examples/BUILD b/doc/source/tune/examples/BUILD index fbd9065de97e..cf6150880e55 100644 --- a/doc/source/tune/examples/BUILD +++ b/doc/source/tune/examples/BUILD @@ -25,7 +25,6 @@ py_test_run_all_notebooks( "horovod_simple.ipynb", # REGRESSION "hyperopt_example.ipynb", # REGRESSION "sigopt_example.ipynb", # REGRESSION - "tune-pytorch-cifar.ipynb", # REGRESSION "tune-sklearn.ipynb", # REGRESSION ], data = ["//doc/source/tune/examples:tune_examples"], diff --git a/doc/source/tune/examples/tune-pytorch-cifar.ipynb b/doc/source/tune/examples/tune-pytorch-cifar.ipynb index ab8aa84cac9e..cc2a1d59d924 100644 --- a/doc/source/tune/examples/tune-pytorch-cifar.ipynb +++ b/doc/source/tune/examples/tune-pytorch-cifar.ipynb @@ -299,7 +299,7 @@ " device = \"cuda:0\" if torch.cuda.is_available() else \"cpu\"\n", " best_trained_model.to(device)\n", "\n", - " checkpoint_path = os.path.join(best_trial.checkpoint.dir_or_data, \"checkpoint\")\n", + " checkpoint_path = os.path.join(best_trial.checkpoint.dir_or_data, \"checkpoint.pt\")\n", "\n", " model_state, optimizer_state = torch.load(checkpoint_path)\n", " best_trained_model.load_state_dict(model_state)\n",