-
Notifications
You must be signed in to change notification settings - Fork 2
/
rotation_prediction_training.py
141 lines (113 loc) · 4.74 KB
/
rotation_prediction_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from __future__ import print_function
import argparse
import copy
import os
import imp
from dataloader import DataLoader, GenericDataset, get_dataloader
import matplotlib.pyplot as plt
from model import BowNet
from utils import load_checkpoint, accuracy
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import time
import numpy as np
# Get train and test dataloaders
batch_size = 64
dloader_train = get_dataloader(split='train', mode='rotation', batch_size=batch_size)
dloader_test = get_dataloader(split='test', mode='rotation', batch_size=batch_size)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
PATH = "rotnet1_checkpoint.pt"
#rotnet, optimizer, start_epoch, loss = load_checkpoint(PATH, device, BowNet)
num_epochs = 150
start_epoch = 0
end_epoch = num_epochs - start_epoch
rotnet = BowNet(num_classes=4).to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.SGD(rotnet.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.2, patience=10)
with torch.cuda.device(0):
for epoch in np.arange(start_epoch, end_epoch): # loop over the dataset multiple times
print()
print(f"TRAINING Epoch {epoch+1}")
running_loss = 0.0
loss_100 = 0.0
total_correct = 0
total_samples = 0
print("number of batch: ",len(dloader_train))
start_epoch = time.time()
accs = []
rotnet.train()
for idx, batch in enumerate(tqdm(dloader_train(epoch))): #We feed epoch in dloader_train to get a deterministic batch
start_time = time.time()
# get the inputs; data is a list of [inputs, labels]
inputs, labels = batch
check_input = inputs[0].permute(1, 2, 0)
#Load data to GPU
inputs, labels = inputs.cuda(), labels.cuda()
time_load_data = time.time() - start_time
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
logits, preds = rotnet(inputs)
#Compute loss
loss = criterion(logits, labels)
#Back Prop and Optimize
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
loss_100 += loss.item()
acc_batch, batch_correct_preds = accuracy(preds.data, labels, topk=(1,))
accs.append(acc_batch[0].item())
total_correct += batch_correct_preds
total_samples += preds.size(0)
accs = np.array(accs)
print("epoch training accuracy: ", 100*total_correct/total_samples)
print("Time to load the data", time_load_data)
print("Time to finish an epoch ", time.time() - start_epoch)
print('[%d, %5d] epoches loss: %.3f' %
(epoch, len(dloader_train), running_loss / len(dloader_train)))
torch.save({
'epoch': epoch,
'model_state_dict': rotnet.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
}, PATH)
torch.cuda.empty_cache()
print()
print(f"EVALUATION Epoch {epoch+1}")
rotnet.eval()
print("number of batch: ",len(dloader_test))
start_epoch = time.time()
running_loss = 0.0
accs = []
test_correct = 0
test_total = 0
for idx, batch in enumerate(tqdm(dloader_test())): #We don't feed epoch to dloader_test because we want a random batch
start_time = time.time()
# get the inputs; data is a list of [inputs, labels]
inputs, labels = batch
#Load data to GPU
inputs, labels = inputs.cuda(), labels.cuda()
time_load_data = time.time() - start_time
logits, preds = rotnet(inputs)
#Compute loss
loss = criterion(logits, labels)
# print statistics
running_loss += loss.item()
acc_batch, batch_correct_preds = accuracy(preds.data, labels, topk=(1,))
accs.append(acc_batch[0].item())
test_correct += batch_correct_preds
test_total += preds.size(0)
# lr scheduler will monitor test loss
lr_scheduler.step(running_loss/len(dloader_test))
accs = np.array(accs)
print("epoch test accuracy: ", 100*test_correct/test_total)
print("Time to load the data", time_load_data)
print("Time to finish an epoch ", time.time() - start_epoch)
print('[%d, %5d] epoches loss: %.3f' %
(epoch, len(dloader_test), running_loss / len(dloader_test)))
print('Finished Training')