-
Notifications
You must be signed in to change notification settings - Fork 0
/
config-example.ini
95 lines (71 loc) · 2.38 KB
/
config-example.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
[Mnist]
file = './data'
dataset = 'mnist'
nom_dossier_resultats = 'Mnist_pas_adaptatifs'
# Paramètres d'apprentissage (pour l'engine notamment)
training_size = 10000
randomize_learning_set = True
learning_set_pass_nb = 1
nb_exp = 1
batch_size = 1
training_fun = MnistTest
# Paramètres de test
testing_size = 1000
test_period = 1000
testing_fun = MnistTest
# Configuration du réseau
network = [{'type': 'FC',
'activation_function': 'Sigmoid(0.1)',
'input_size': 784,
'output_size': 300,
'noise_size': 0},
{'type': 'FC',
'activation_function': 'Sigmoid(0.1)',
'input_size': 300,
'output_size': 10,
'noise_size': 0}]
error_fun = Norm2()
eta = 0.2
momentum = 0
# Traitement des données
SaveFolder = 'Mnist'
[GanMnist]
number_exp = [2]
file = ['./data']
dataset = ['mnist']
numbers_to_draw = [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]
disc_learning_ratio = [10]
disc_fake_learning_ratio = [0]
disc_network_layers = [[{'type': 'FC',
'activation_function': 'Sigmoid(0.1)',
'input_size': 784,
'output_size': 20,
'noise_size': 0},
{'type': 'FC',
'activation_function': 'Sigmoid(0.1)',
'input_size': 20,
'output_size': 1,
'noise_size': 0}]]
disc_error_fun = [CostFunction()]
training_fun = [MnistGanTest()]
generator_network_layers = [[{'type': 'FC',
'activation_function': 'Sigmoid(0.1)',
'input_size': 100,
'output_size': 300,
'noise_size': 0},
{'type': 'FC',
'activation_function': 'Sigmoid(0.1)',
'input_size': 300,
'output_size': 784,
'noise_size': 0}]]
gen_error_fun = [NonSatHeuristic()]
gen_learning_ratio = [10]
gen_learning_ratio_alone = [0]
nb_images_during_learning = [50]
nb_images_par_sortie_during_learning = [20]
final_images = [20]
play_number = [100000]
save_folder = ['ratio_10_10' + i for i in ['1', '2', '0_05', '0_1', '0_2', '0_5', '1', '2', '5', '10']]
test_period = [1000]
lissage_test = [10]
batch_size = [1]