-
Notifications
You must be signed in to change notification settings - Fork 31
/
iLearn-ML-RF.py
100 lines (88 loc) · 5.22 KB
/
iLearn-ML-RF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#!/usr/bin/env python
# _*_ coding: utf-8 _*_
import argparse
import numpy as np
from pubscripts import read_code_ml, save_file, draw_plot, calculate_prediction_metrics
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import StratifiedKFold
def RF_Classifier(X, y, indep=None, fold=5, n_trees=100, out='RF_output'):
"""
Parameters:
----------
:param X: 2-D ndarray
:param y: 1-D ndarray
:param indep: 2-D ndarray, the first column is labels and the rest are feature values
:param fold: int, default 5
:param n_trees: int, number of trees, default: 5
:param out:
:return:
info: str, the model parameters
cross-validation result: list with element is ndarray
independent result: ndarray, the first column is labels and the rest are prediction scores.
"""
classes = sorted(list(set(y)))
if indep.shape[0] != 0:
indep_out = np.zeros((indep.shape[0], len(classes) + 1))
indep_out[:, 0] = indep[:, 0]
prediction_result_cv = []
prediction_result_ind = np.array([])
if indep.shape[0] != 0:
prediction_result_ind = np.zeros((len(indep), len(classes) + 1))
prediction_result_ind[:, 0] = indep[:, 0]
folds = StratifiedKFold(fold).split(X, y)
for i, (trained, valided) in enumerate(folds):
train_y, train_X = y[trained], X[trained]
valid_y, valid_X = y[valided], X[valided]
model = RandomForestClassifier(n_estimators=n_trees, bootstrap=False)
rfc = model.fit(train_X, train_y)
scores = rfc.predict_proba(valid_X)
tmp_result = np.zeros((len(valid_y), len(classes) + 1))
tmp_result[:, 0], tmp_result[:, 1:] = valid_y, scores
prediction_result_cv.append(tmp_result)
# independent
if indep.shape[0] != 0:
prediction_result_ind[:, 1:] += rfc.predict_proba(indep[:, 1:])
if indep.shape[0] != 0:
prediction_result_ind[:, 1:] /= fold
header = 'n_trees: %d' % n_trees
return header, prediction_result_cv, prediction_result_ind
if __name__ == '__main__':
parser = argparse.ArgumentParser(usage="it's usage tip.", description="training RF model.")
parser.add_argument("--train", required=True, help="input training coding file")
parser.add_argument("--indep", help="independent coding file")
parser.add_argument("--format", choices=['tsv', 'svm', 'csv', 'weka'], default='tsv',
help="input file format (default tab format)")
parser.add_argument("--n_trees", type=int, default=100, help="the number of trees in the forest (default 100)")
parser.add_argument("--fold", type=int, default=5,
help="n-fold cross validation mode (default 5-fold cross-validation, 1 means jack-knife cross-validation)")
parser.add_argument("--out", default="RF_output", help="set prefix for output score file")
args = parser.parse_args()
X, y, independent = 0, 0, np.array([])
X, y = read_code_ml.read_code(args.train, format='%s' % args.format)
if args.indep:
ind_X, ind_y = read_code_ml.read_code(args.indep, format='%s' % args.format)
independent = np.zeros((ind_X.shape[0], ind_X.shape[1] + 1))
independent[:, 0], independent[:, 1:] = ind_y, ind_X
para_info, cv_res, ind_res = RF_Classifier(X, y, indep=independent, fold=args.fold, n_trees=args.n_trees,
out=args.out)
classes = sorted(list(set(y)))
if len(classes) == 2:
save_file.save_CV_result_binary(cv_res, '%s_CV.txt' % args.out, para_info)
mean_auc = draw_plot.plot_roc_cv(cv_res, '%s_ROC_CV.png' % args.out, label_column=0, score_column=2)
mean_auprc = draw_plot.plot_prc_CV(cv_res, '%s_PRC_CV.png' % args.out, label_column=0, score_column=2)
cv_metrics = calculate_prediction_metrics.calculate_metrics_cv(cv_res, label_column=0, score_column=2,)
save_file.save_prediction_metrics_cv(cv_metrics, '%s_metrics_CV.txt' % args.out)
if args.indep:
save_file.save_IND_result_binary(ind_res,'%s_IND.txt' % args.out, para_info)
ind_auc = draw_plot.plot_roc_ind(ind_res, '%s_ROC_IND.png' % args.out, label_column=0, score_column=2)
ind_auprc = draw_plot.plot_prc_ind(ind_res, '%s_PRC_IND.png' % args.out, label_column=0, score_column=2)
ind_metrics = calculate_prediction_metrics.calculate_metrics(ind_res[:, 0], ind_res[:, 2])
save_file.save_prediction_metrics_ind(ind_metrics, '%s_metrics_IND.txt' %args.out)
if len(classes) > 2:
save_file.save_CV_result(cv_res, classes, '%s_CV.txt' % args.out, para_info)
cv_metrics = calculate_prediction_metrics.calculate_metrics_cv_muti(cv_res, classes, label_column=0)
save_file.save_prediction_metrics_cv_muti(cv_metrics, classes, '%s_metrics_CV.txt' % args.out)
if args.indep:
save_file.save_IND_result(ind_res, classes, '%s_IND.txt' % args.out, para_info)
ind_metrics = calculate_prediction_metrics.calculate_metrics_ind_muti(ind_res, classes, label_column=0)
save_file.save_prediction_metrics_ind_muti(ind_metrics, classes, '%s_metrics_IND.txt' % args.out)