-
Notifications
You must be signed in to change notification settings - Fork 2
/
trainer.py
348 lines (283 loc) · 17.5 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import os
import cv2
import time
import yaml
import torch
import datetime
from tensorboardX import SummaryWriter
import torchvision.transforms as tvf
import torch.nn as nn
import torch.nn.functional as F
from nets.geom import getK, getWarp, _grid_positions, getWarpNoValidate
from nets.loss import make_detector_loss, make_noise_score_map_loss
from nets.score import extract_kpts
from nets.multi_sampler import MultiSampler
from nets.noise_reliability_loss import MultiPixelAPLoss
from datasets.noise_simulator import NoiseSimulator
from nets.l2net import Quad_L2Net
class Trainer:
def __init__(self, config, device, loader, job_name, start_cnt):
self.config = config
self.device = device
self.loader = loader
# tensorboard writer construction
os.makedirs('./runs/', exist_ok=True)
if job_name != '':
self.log_dir = f'runs/{job_name}'
else:
self.log_dir = f'runs/{datetime.datetime.now().strftime("%m-%d-%H%M%S")}'
self.writer = SummaryWriter(self.log_dir)
with open(f'{self.log_dir}/config.yaml', 'w') as f:
yaml.dump(config, f)
if config['network']['input_type'] == 'gray':
self.model = eval(f'{config["network"]["model"]}(inchan=1)').to(device)
elif config['network']['input_type'] == 'rgb' or config['network']['input_type'] == 'raw-demosaic':
self.model = eval(f'{config["network"]["model"]}(inchan=3)').to(device)
elif config['network']['input_type'] == 'raw':
self.model = eval(f'{config["network"]["model"]}(inchan=4)').to(device)
else:
raise NotImplementedError()
# noise maker
self.noise_maker = NoiseSimulator(device)
# reliability map conv
self.model.clf = nn.Conv2d(128, 2, kernel_size=1).cuda()
# load model
self.cnt = 0
if start_cnt != 0:
self.model.load_state_dict(torch.load(f'{self.log_dir}/model_{start_cnt:06d}.pth', map_location=device))
self.cnt = start_cnt + 1
# sampler
sampler = MultiSampler(ngh=7, subq=-8, subd=1, pos_d=3, neg_d=5, border=16,
subd_neg=-8,maxpool_pos=True).to(device)
self.reliability_relitive_loss = MultiPixelAPLoss(sampler, nq=20).to(device)
# optimizer and scheduler
if self.config['training']['optimizer'] == 'SGD':
self.optimizer = torch.optim.SGD(
[{'params': self.model.parameters(), 'initial_lr': self.config['training']['lr']}],
lr=self.config['training']['lr'],
momentum=self.config['training']['momentum'],
weight_decay=self.config['training']['weight_decay'],
)
elif self.config['training']['optimizer'] == 'Adam':
self.optimizer = torch.optim.Adam(
[{'params': self.model.parameters(), 'initial_lr': self.config['training']['lr']}],
lr=self.config['training']['lr'],
weight_decay=self.config['training']['weight_decay']
)
else:
raise NotImplementedError()
self.lr_scheduler = torch.optim.lr_scheduler.StepLR(
self.optimizer,
step_size=self.config['training']['lr_step'],
gamma=self.config['training']['lr_gamma'],
last_epoch=start_cnt
)
for param_tensor in self.model.state_dict():
print(param_tensor, "\t", self.model.state_dict()[param_tensor].size())
def save(self, iter_num):
torch.save(self.model.state_dict(), f'{self.log_dir}/model_{iter_num:06d}.pth')
def load(self, path):
self.model.load_state_dict(torch.load(path))
def train(self):
self.model.train()
for epoch in range(2):
for batch_idx, inputs in enumerate(self.loader):
self.optimizer.zero_grad()
t = time.time()
# preprocess and add noise
img0_ori, noise_img0_ori = self.preprocess_noise_pair(inputs['img0'], self.cnt)
img1_ori, noise_img1_ori = self.preprocess_noise_pair(inputs['img1'], self.cnt)
img0 = img0_ori.permute(0, 3, 1, 2).float().to(self.device)
img1 = img1_ori.permute(0, 3, 1, 2).float().to(self.device)
noise_img0 = noise_img0_ori.permute(0, 3, 1, 2).float().to(self.device)
noise_img1 = noise_img1_ori.permute(0, 3, 1, 2).float().to(self.device)
if self.config['network']['input_type'] == 'rgb':
# 3-channel rgb
RGB_mean = [0.485, 0.456, 0.406]
RGB_std = [0.229, 0.224, 0.225]
norm_RGB = tvf.Normalize(mean=RGB_mean, std=RGB_std)
img0 = norm_RGB(img0)
img1 = norm_RGB(img1)
noise_img0 = norm_RGB(noise_img0)
noise_img1 = norm_RGB(noise_img1)
elif self.config['network']['input_type'] == 'gray':
# 1-channel
img0 = torch.mean(img0, dim=1, keepdim=True)
img1 = torch.mean(img1, dim=1, keepdim=True)
noise_img0 = torch.mean(noise_img0, dim=1, keepdim=True)
noise_img1 = torch.mean(noise_img1, dim=1, keepdim=True)
norm_gray0 = tvf.Normalize(mean=img0.mean(), std=img0.std())
norm_gray1 = tvf.Normalize(mean=img1.mean(), std=img1.std())
img0 = norm_gray0(img0)
img1 = norm_gray1(img1)
noise_img0 = norm_gray0(noise_img0)
noise_img1 = norm_gray1(noise_img1)
elif self.config['network']['input_type'] == 'raw':
# 4-channel
pass
elif self.config['network']['input_type'] == 'raw-demosaic':
# 3-channel
pass
else:
raise NotImplementedError()
desc0, score_map0, _, _ = self.model(img0)
desc1, score_map1, _, _ = self.model(img1)
conf0 = F.softmax(self.model.clf(torch.abs(desc0)**2.0), dim=1)[:,1:2]
conf1 = F.softmax(self.model.clf(torch.abs(desc1)**2.0), dim=1)[:,1:2]
noise_desc0, noise_score_map0, noise_at0, noise_att0 = self.model(noise_img0)
noise_desc1, noise_score_map1, noise_at1, noise_att1 = self.model(noise_img1)
noise_conf0 = F.softmax(self.model.clf(torch.abs(noise_desc0)**2.0), dim=1)[:,1:2]
noise_conf1 = F.softmax(self.model.clf(torch.abs(noise_desc1)**2.0), dim=1)[:,1:2]
cur_feat_size0 = torch.tensor(score_map0.shape[2:])
cur_feat_size1 = torch.tensor(score_map1.shape[2:])
desc0 = desc0.permute(0, 2, 3, 1)
desc1 = desc1.permute(0, 2, 3, 1)
score_map0 = score_map0.permute(0, 2, 3, 1)
score_map1 = score_map1.permute(0, 2, 3, 1)
noise_desc0 = noise_desc0.permute(0, 2, 3, 1)
noise_desc1 = noise_desc1.permute(0, 2, 3, 1)
noise_score_map0 = noise_score_map0.permute(0, 2, 3, 1)
noise_score_map1 = noise_score_map1.permute(0, 2, 3, 1)
conf0 = conf0.permute(0, 2, 3, 1)
conf1 = conf1.permute(0, 2, 3, 1)
noise_conf0 = noise_conf0.permute(0, 2, 3, 1)
noise_conf1 = noise_conf1.permute(0, 2, 3, 1)
r_K0 = getK(inputs['ori_img_size0'], cur_feat_size0, inputs['K0']).to(self.device)
r_K1 = getK(inputs['ori_img_size1'], cur_feat_size1, inputs['K1']).to(self.device)
pos0 = _grid_positions(
cur_feat_size0[0], cur_feat_size0[1], img0.shape[0]).to(self.device)
pos0_for_rel, pos1_for_rel, _ = getWarpNoValidate(
pos0, inputs['rel_pose'].to(self.device), inputs['depth0'].to(self.device),
r_K0, inputs['depth1'].to(self.device), r_K1, img0.shape[0])
pos0, pos1, _ = getWarp(
pos0, inputs['rel_pose'].to(self.device), inputs['depth0'].to(self.device),
r_K0, inputs['depth1'].to(self.device), r_K1, img0.shape[0])
reliab_loss_relative = self.reliability_relitive_loss(desc0, desc1, noise_desc0, noise_desc1, conf0, conf1, noise_conf0, noise_conf1, pos0_for_rel, pos1_for_rel, img0.shape[0], img0.shape[2], img0.shape[3])
det_structured_loss, det_accuracy = make_detector_loss(
pos0, pos1, desc0, desc1,
score_map0, score_map1, img0.shape[0],
self.config['network']['use_corr_n'],
self.config['network']['loss_type'],
self.config
)
det_structured_loss_noise, det_accuracy_noise = make_detector_loss(
pos0, pos1, noise_desc0, noise_desc1,
noise_score_map0, noise_score_map1, img0.shape[0],
self.config['network']['use_corr_n'],
self.config['network']['loss_type'],
self.config
)
indices0, scores0 = extract_kpts(
score_map0.permute(0, 3, 1, 2),
k=self.config['network']['det']['kpt_n'],
score_thld=self.config['network']['det']['score_thld'],
nms_size=self.config['network']['det']['nms_size'],
eof_size=self.config['network']['det']['eof_size'],
edge_thld=self.config['network']['det']['edge_thld']
)
indices1, scores1 = extract_kpts(
score_map1.permute(0, 3, 1, 2),
k=self.config['network']['det']['kpt_n'],
score_thld=self.config['network']['det']['score_thld'],
nms_size=self.config['network']['det']['nms_size'],
eof_size=self.config['network']['det']['eof_size'],
edge_thld=self.config['network']['det']['edge_thld']
)
noise_score_loss0, mask0 = make_noise_score_map_loss(score_map0, noise_score_map0, indices0, img0.shape[0], thld=0.1)
noise_score_loss1, mask1 = make_noise_score_map_loss(score_map1, noise_score_map1, indices1, img1.shape[0], thld=0.1)
total_loss = det_structured_loss + det_structured_loss_noise
total_loss += noise_score_loss0 / 2. * 1.
total_loss += noise_score_loss1 / 2. * 1.
total_loss += reliab_loss_relative[0] / 2. * 0.5
total_loss += reliab_loss_relative[1] / 2. * 0.5
self.writer.add_scalar("acc/normal_acc", det_accuracy, self.cnt)
self.writer.add_scalar("acc/noise_acc", det_accuracy_noise, self.cnt)
self.writer.add_scalar("loss/total_loss", total_loss, self.cnt)
self.writer.add_scalar("loss/noise_score_loss", (noise_score_loss0 + noise_score_loss1) / 2., self.cnt)
self.writer.add_scalar("loss/det_loss_normal", det_structured_loss, self.cnt)
self.writer.add_scalar("loss/det_loss_noise", det_structured_loss_noise, self.cnt)
print('iter={},\tloss={:.4f},\tacc={:.4f},\t{:.4f}s/iter'.format(self.cnt, total_loss, det_accuracy, time.time()-t))
# print(f'normal_loss: {det_structured_loss}, noise_loss: {det_structured_loss_noise}, reliab_loss: {reliab_loss_relative[0]}, {reliab_loss_relative[1]}')
if det_structured_loss != 0:
total_loss.backward()
self.optimizer.step()
self.lr_scheduler.step()
if self.cnt % 100 == 0:
noise_indices0, noise_scores0 = extract_kpts(
noise_score_map0.permute(0, 3, 1, 2),
k=self.config['network']['det']['kpt_n'],
score_thld=self.config['network']['det']['score_thld'],
nms_size=self.config['network']['det']['nms_size'],
eof_size=self.config['network']['det']['eof_size'],
edge_thld=self.config['network']['det']['edge_thld']
)
noise_indices1, noise_scores1 = extract_kpts(
noise_score_map1.permute(0, 3, 1, 2),
k=self.config['network']['det']['kpt_n'],
score_thld=self.config['network']['det']['score_thld'],
nms_size=self.config['network']['det']['nms_size'],
eof_size=self.config['network']['det']['eof_size'],
edge_thld=self.config['network']['det']['edge_thld']
)
if self.config['network']['input_type'] == 'raw':
kpt_img0 = self.showKeyPoints(img0_ori[0][..., :3] * 255., indices0[0])
kpt_img1 = self.showKeyPoints(img1_ori[0][..., :3] * 255., indices1[0])
noise_kpt_img0 = self.showKeyPoints(noise_img0_ori[0][..., :3] * 255., noise_indices0[0])
noise_kpt_img1 = self.showKeyPoints(noise_img1_ori[0][..., :3] * 255., noise_indices1[0])
else:
kpt_img0 = self.showKeyPoints(img0_ori[0] * 255., indices0[0])
kpt_img1 = self.showKeyPoints(img1_ori[0] * 255., indices1[0])
noise_kpt_img0 = self.showKeyPoints(noise_img0_ori[0] * 255., noise_indices0[0])
noise_kpt_img1 = self.showKeyPoints(noise_img1_ori[0] * 255., noise_indices1[0])
self.writer.add_image('img0/kpts', kpt_img0, self.cnt, dataformats='HWC')
self.writer.add_image('img1/kpts', kpt_img1, self.cnt, dataformats='HWC')
self.writer.add_image('img0/noise_kpts', noise_kpt_img0, self.cnt, dataformats='HWC')
self.writer.add_image('img1/noise_kpts', noise_kpt_img1, self.cnt, dataformats='HWC')
self.writer.add_image('img0/score_map', score_map0[0], self.cnt, dataformats='HWC')
self.writer.add_image('img1/score_map', score_map1[0], self.cnt, dataformats='HWC')
self.writer.add_image('img0/noise_score_map', noise_score_map0[0], self.cnt, dataformats='HWC')
self.writer.add_image('img1/noise_score_map', noise_score_map1[0], self.cnt, dataformats='HWC')
self.writer.add_image('img0/kpt_mask', mask0.unsqueeze(2), self.cnt, dataformats='HWC')
self.writer.add_image('img1/kpt_mask', mask1.unsqueeze(2), self.cnt, dataformats='HWC')
self.writer.add_image('img0/conf', conf0[0], self.cnt, dataformats='HWC')
self.writer.add_image('img1/conf', conf1[0], self.cnt, dataformats='HWC')
self.writer.add_image('img0/noise_conf', noise_conf0[0], self.cnt, dataformats='HWC')
self.writer.add_image('img1/noise_conf', noise_conf1[0], self.cnt, dataformats='HWC')
if self.cnt % 5000 == 0:
self.save(self.cnt)
self.cnt += 1
def showKeyPoints(self, img, indices):
key_points = cv2.KeyPoint_convert(indices.cpu().float().numpy()[:, ::-1])
img = img.numpy().astype('uint8')
img = cv2.drawKeypoints(img, key_points, None, color=(0, 255, 0))
return img
def preprocess(self, img, iter_idx):
if not self.config['network']['noise'] and 'raw' not in self.config['network']['input_type']:
return img
raw = self.noise_maker.rgb2raw(img, batched=True)
if self.config['network']['noise']:
ratio_dec = min(self.config['network']['noise_maxstep'], iter_idx) / self.config['network']['noise_maxstep']
raw = self.noise_maker.raw2noisyRaw(raw, ratio_dec=ratio_dec, batched=True)
if self.config['network']['input_type'] == 'raw':
return torch.tensor(self.noise_maker.raw2packedRaw(raw, batched=True))
if self.config['network']['input_type'] == 'raw-demosaic':
return torch.tensor(self.noise_maker.raw2demosaicRaw(raw, batched=True))
rgb = self.noise_maker.raw2rgb(raw, batched=True)
if self.config['network']['input_type'] == 'rgb' or self.config['network']['input_type'] == 'gray':
return torch.tensor(rgb)
raise NotImplementedError()
def preprocess_noise_pair(self, img, iter_idx):
assert self.config['network']['noise']
raw = self.noise_maker.rgb2raw(img, batched=True)
ratio_dec = min(self.config['network']['noise_maxstep'], iter_idx) / self.config['network']['noise_maxstep']
noise_raw = self.noise_maker.raw2noisyRaw(raw, ratio_dec=ratio_dec, batched=True)
if self.config['network']['input_type'] == 'raw':
return torch.tensor(self.noise_maker.raw2packedRaw(raw, batched=True)), \
torch.tensor(self.noise_maker.raw2packedRaw(noise_raw, batched=True))
if self.config['network']['input_type'] == 'raw-demosaic':
return torch.tensor(self.noise_maker.raw2demosaicRaw(raw, batched=True)), \
torch.tensor(self.noise_maker.raw2demosaicRaw(noise_raw, batched=True))
noise_rgb = self.noise_maker.raw2rgb(noise_raw, batched=True)
if self.config['network']['input_type'] == 'rgb' or self.config['network']['input_type'] == 'gray':
return img, torch.tensor(noise_rgb)
raise NotImplementedError()