-
Notifications
You must be signed in to change notification settings - Fork 314
/
moe_gcn.py
139 lines (116 loc) · 4.66 KB
/
moe_gcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch.nn as nn
import torch.nn.functional as F
from cogdl.layers import GCNLayer
from cogdl.utils import get_activation
from fmoe import FMoETransformerMLP
from .. import BaseModel
class CustomizedMoEPositionwiseFF(FMoETransformerMLP):
def __init__(self, d_model, d_inner, dropout, moe_num_expert=64, moe_top_k=2):
activation = nn.Sequential(nn.GELU(), nn.Dropout(dropout))
super().__init__(
num_expert=moe_num_expert, d_model=d_model, d_hidden=d_inner, top_k=moe_top_k, activation=activation
)
self.dropout = nn.Dropout(dropout)
self.bn_layer = nn.BatchNorm1d(d_model)
def forward(self, inp):
##### positionwise feed-forward
core_out = super().forward(inp)
core_out = self.dropout(core_out)
##### residual connection + batch normalization
output = self.bn_layer(inp + core_out)
return output
class GraphConvBlock(nn.Module):
def __init__(self, conv_func, conv_params, in_feats, out_feats, dropout=0.0, residual=False):
super(GraphConvBlock, self).__init__()
self.graph_conv = conv_func(**conv_params, in_features=in_feats, out_features=out_feats)
self.pos_ff = CustomizedMoEPositionwiseFF(out_feats, out_feats * 2, dropout, moe_num_expert=64, moe_top_k=2)
self.dropout = dropout
if residual is True:
assert in_feats is not None
self.res_connection = nn.Linear(in_feats, out_feats)
else:
self.res_connection = None
def reset_parameters(self):
"""Reinitialize model parameters."""
# self.graph_conv.reset_parameters()
if self.res_connection is not None:
self.res_connection.reset_parameters()
def forward(self, graph, feats):
new_feats = self.graph_conv(graph, feats)
if self.res_connection is not None:
res = self.res_connection
new_feats = new_feats + res
new_feats = F.dropout(new_feats, p=self.dropout, training=self.training)
new_feats = self.pos_ff(new_feats)
return new_feats
class MoEGCN(BaseModel):
r"""The GCN model from the `"Semi-Supervised Classification with Graph Convolutional Networks"
<https://arxiv.org/abs/1609.02907>`_ paper
Args:
in_features (int) : Number of input features.
out_features (int) : Number of classes.
hidden_size (int) : The dimension of node representation.
dropout (float) : Dropout rate for model training.
"""
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
# fmt: off
parser.add_argument("--num-features", type=int)
parser.add_argument("--num-classes", type=int)
parser.add_argument("--num-layers", type=int, default=2)
parser.add_argument("--hidden-size", type=int, default=64)
parser.add_argument("--dropout", type=float, default=0.5)
parser.add_argument("--no-residual", action="store_true")
parser.add_argument("--norm", type=str, default="batchnorm")
parser.add_argument("--activation", type=str, default="relu")
# fmt: on
@classmethod
def build_model_from_args(cls, args):
return cls(
args.num_features,
args.hidden_size,
args.num_classes,
args.num_layers,
args.dropout,
args.activation,
not args.no_residual,
args.norm,
)
def __init__(
self, in_feats, hidden_size, out_feats, num_layers, dropout, activation="relu", residual=True, norm=None
):
super(MoEGCN, self).__init__()
shapes = [in_feats] + [hidden_size] * num_layers
conv_func = GCNLayer
conv_params = {
"dropout": dropout,
"norm": norm,
"residual": residual,
"activation": activation,
}
self.layers = nn.ModuleList(
[
GraphConvBlock(conv_func, conv_params, shapes[i], shapes[i + 1], dropout=dropout,)
for i in range(num_layers)
]
)
self.num_layers = num_layers
self.dropout = dropout
self.act = get_activation(activation)
self.final_cls = nn.Linear(hidden_size, out_feats)
def embed(self, graph):
graph.sym_norm()
h = graph.x
for i in range(self.num_layers - 1):
h = self.layers[i](graph, h)
return h
def forward(self, graph):
graph.sym_norm()
h = graph.x
for i in range(self.num_layers):
h = self.layers[i](graph, h)
h = self.final_cls(h)
return h
def predict(self, data):
return self.forward(data)