-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
temporarily-removed-sections.tex
93 lines (93 loc) · 4.29 KB
/
temporarily-removed-sections.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
\section{Miscellany}\label{section-miscellany}
\subsection{Concrete Categories}\label{subsection-concrete-categories}
\begin{definition}{Concrete Categories}{concrete-categories}%
A category $\CatFont{C}$ is \index[categories]{category!concrete}\textbf{concrete} if there exists a faithful functor $F\colon\CatFont{C}\to\Sets$.
\end{definition}
\subsection{Balanced Categories}\label{subsection-balanced-categories}
\begin{definition}{Balanced Categories}{balanced-categories}%
A category is \index[categories]{category!balanced}\textbf{balanced} if every morphism which is both a monomorphism and an epimorphism is an isomorphism.
\end{definition}
\subsection{Monoid Actions on Objects of Categories}\label{subsection-monoid-actions-on-objects-of-categories}
Let $A$ be a monoid, let $\CatFont{C}$ be a category, and let $X\in\Obj(\CatFont{C})$.
\begin{definition}{Monoid Actions on Objects of Categories}{monoid-actions-on-objects-of-categories}%
An \index[categories]{monoid action!on an object of a category}\textbf{$A$-action on $X$} is a functor $\lambda\colon\B{A}\to\CatFont{C}$ with $\lambda(\point)=X$.
\end{definition}
\begin{remark}{Unwinding \cref{monoid-actions-on-objects-of-categories}}{unwinding-monoid-actions-on-objects-of-categories}%
In detail, an \textbf{$A$-action on $X$} is an $A$-action on $\sfEnd_{\CatFont{C}}(X)$, consisting of a morphism
\[
\lambda
\colon
A
\to
\underbrace{\sfEnd_{\CatFont{C}}(X)}_{\defeq\Hom_{\CatFont{C}}(X,X)}
\]%
satisfying the following conditions:
\begin{enumerate}
\item\SloganFont{Preservation of Identities. }We have
\[
\lambda_{1_{A}}
=
\id_{X}.
\]%
\item\SloganFont{Preservation of Composition. }For each $a,b\in A$, we have
\begin{webcompile}
\lambda_{b}\circ\lambda_{a}
=
\lambda_{ab},
\quad
\begin{tikzcd}[row sep={5.0*\the\DL,between origins}, column sep={5.0*\the\DL,between origins}, background color=backgroundColor, ampersand replacement=\&]
X
\arrow[r,"\lambda_{a}"]
\arrow[rd,"\lambda_{ab}"']
\&
X
\arrow[d,"\lambda_{b}"]
\\
\&
X\mrp{.}
\end{tikzcd}
\end{webcompile}
\end{enumerate}
\end{remark}
\subsection{Group Actions on Objects of Categories}\label{subsection-group-actions-on-objects-of-categories}
Let $G$ be a group, let $\CatFont{C}$ be a category, and let $X\in\Obj(\CatFont{C})$.
\begin{definition}{Group Actions on Objects of Categories}{group-actions-on-objects-of-categories}%
A \index[categories]{group action!on an object of a category}\textbf{$G$-action on $X$} is a functor $\lambda\colon\B{G}\to\CatFont{C}$ with $\lambda(\point)=X$.
\end{definition}
\begin{remark}{Unwinding \cref{group-actions-on-objects-of-categories}}{unwinding-group-actions-on-objects-of-categories}%
In detail, a \textbf{$G$-action on $X$} is a $G$-action on $\sfAut_{\CatFont{C}}(X)$, consisting of a morphism
\[
\lambda
\colon
G
\to
\underbrace{\sfEnd_{\CatFont{C}}(X)}_{\defeq\Hom_{\CatFont{C}}(X,X)}
\]%
satisfying the following conditions:
\begin{enumerate}
\item\SloganFont{Preservation of Identities. }We have
\[
\lambda_{1_{A}}
=
\id_{X}.
\]%
\item\SloganFont{Preservation of Composition. }For each $a,b\in A$, we have
\begin{webcompile}
\lambda_{b}\circ\lambda_{a}
=
\lambda_{ab},
\quad
\begin{tikzcd}[row sep={5.0*\the\DL,between origins}, column sep={5.0*\the\DL,between origins}, background color=backgroundColor, ampersand replacement=\&]
X
\arrow[r,"\lambda_{a}"]
\arrow[rd,"\lambda_{ab}"']
\&
X
\arrow[d,"\lambda_{b}"]
\\
\&
X\mrp{.}
\end{tikzcd}
\end{webcompile}
\end{enumerate}
\end{remark}