diff --git a/README.md b/README.md index 2722030..2e20b0c 100644 --- a/README.md +++ b/README.md @@ -37,10 +37,12 @@ Plot{Plots.PyPlotBackend() n=1} julia> c = wavelet(Morlet(π), β=2) +CWT{Morlet mean 3.141592653589793, Father Wavelet, Q=8.0, β=2.0,aveLen=0.0, frame=1.0, norm=Inf, extraOctaves=0.0} + julia> res = ContinuousWavelets.cwt(f, c) ┌ Warning: the lowest frequency wavelet has more than 1% its max at zero, so it may not be analytic. Think carefully -│ lowAprxAnalyt = 0.06186323501016359 -└ @ ContinuousWavelets ~/work/ContinuousWavelets.jl/ContinuousWavelets.jl/src/sanityChecks.jl:6 +│ lowAprxAnalyt = 0.061863 +└ @ ContinuousWavelets ~/work/ContinuousWavelets.jl/ContinuousWavelets.jl/src/sanityChecks.jl:7 2047×31 Matrix{ComplexF64}: -1.48637e-6+3.8241e-19im … 0.000109978+9.67834e-5im -1.48602e-6+5.15534e-19im -8.24922e-5+0.000130656im @@ -90,6 +92,7 @@ julia> exs = cat(testfunction(n, "Doppler"), testfunction(n, "Blocks"), testfunc julia> c = wavelet(cDb2, β=2, extraOctaves=-0) +CWT{Continuous db2, Father Wavelet, Q=8.0, β=2.0,aveLen=0.0, frame=1.0, norm=Inf, extraOctaves=0.0} julia> res = circshift(ContinuousWavelets.cwt(exs, c), (0, 1, 0)) ┌ Warning: the highest frequency wavelet has more than 1% its max at the end, so it may not be analytic. Think carefully diff --git a/docs/src/README.md b/docs/src/README.md index 9b5e78d..54bb6e0 100644 --- a/docs/src/README.md +++ b/docs/src/README.md @@ -1,3 +1,12 @@ +```@meta ex +DocTestFilters = [ + r"\@ ContinuousWavelets .*", + r"[ +-][0-9]\.[0-9]{3,5}e-1[5-9]", + r"[ +-][0-9]\.[0-9]{3,5}e-[2-9][0-9]", + r"im {2,7}", + ] +``` + # ContinuousWavelets [![Build Status](https://travis-ci.com/dsweber2/ContinuousWavelets.jl.svg?branch=master)](https://travis-ci.com/dsweber2/ContinuousWavelets.jl) @@ -38,18 +47,18 @@ julia> f = testfunction(n, "Doppler"); julia> c = wavelet(Morlet(π), β=2) +CWT{Morlet mean 3.141592653589793, Father Wavelet, Q=8.0, β=2.0,aveLen=0.0, frame=1.0, norm=Inf, extraOctaves=0.0} + julia> res = ContinuousWavelets.cwt(f, c) ┌ Warning: the lowest frequency wavelet has more than 1% its max at zero, so it may not be analytic. Think carefully │ lowAprxAnalyt = 0.061863 -└ @ ContinuousWavelets ~/work/ContinuousWavelets.jl/ContinuousWavelets.jl/src/sanityChecks.jl:6 +└ @ ContinuousWavelets ~/work/ContinuousWavelets.jl/ContinuousWavelets.jl/src/sanityChecks.jl:7 2047×31 Matrix{ComplexF64}: -1.48637e-6+3.8241e-19im … 0.000109978+9.67834e-5im -1.48602e-6+5.15534e-19im -8.24922e-5+0.000130656im ⋮ ⋱ ⋮ 0.000435175+2.30636e-19im … -2.47195e-6-1.97048e-8im 0.000435027-8.28725e-19im -2.63499e-6+4.62331e-8im - - ``` As the cwt frame is redundant, there are many choices of dual/inverse frames. There are three available in this package, `NaiveDelta()`, `PenroseDelta()`, and `DualFrames()`. As a toy example, lets knock out the middle time of the bumps function and apply a high pass filter: @@ -104,6 +113,8 @@ julia> exs = cat(testfunction(n, "Doppler"), testfunction(n, "Blocks"), testfunc julia> c = wavelet(cDb2, β=2, extraOctaves=-0) +CWT{Continuous db2, Father Wavelet, Q=8.0, β=2.0,aveLen=0.0, frame=1.0, norm=Inf, extraOctaves=0.0} + julia> res = circshift(ContinuousWavelets.cwt(exs, c), (0, 1, 0)) ┌ Warning: the highest frequency wavelet has more than 1% its max at the end, so it may not be analytic. Think carefully │ highAprxAnalyt = 0.26778