-
Notifications
You must be signed in to change notification settings - Fork 0
/
localPaths.setup
63 lines (44 loc) · 2.83 KB
/
localPaths.setup
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
%% Taken from NetVLAD and Updated by Usman
% datasets_directory (Main directory of all the datasets)
% paths.m_directory (Pre-computed MAQBOOL data)
%%
function paths= localPaths()
% Give Path
datasets_directory = '/mnt/ssd/usman_ws/datasets/maqbool-datasets/datasets-place-recognition/';
paths.m_directory = '/mnt/ssd/usman_ws/maqbool-data-web/'; % Save MAQBOOL files
% --- dependencies
% refer to README.md for the information on dependencies
paths.libReljaMatlab= 'depends/relja_matlab/';
paths.libMatConvNet= '3rd-party-support/matconvnet/'; % should contain matlab/
% If you have installed yael_matlab (**highly recommended for speed**),
% provide the path below. Otherwise, provide the path as 'yael_dummy/':
% this folder contains my substitutes for the used yael functions,
% which are **much slower**, and only included for demonstration purposes
% so do consider installing yael_matlab, or make your own faster
% version (especially of the yael_nn function)
paths.libYaelMatlab= 'yael_dummy/';
% --- dataset specifications
paths.dsetSpecDir= strcat(datasets_directory,'datasets-specs');
% --- dataset locations
paths.dsetRootPitts= strcat(datasets_directory,'Test_Pitts250k/'); % should contain images/ and queries/
paths.dsetRootTokyo247= strcat(datasets_directory,'Test_247_Tokyo_GSV/'); % should contain images/ and query/
paths.dsetRootTokyoTM= strcat(datasets_directory,'tokyoTimeMachine/'); % should contain images/
paths.dsetRootOxford= strcat(datasets_directory,'oxbuild_images/'); % should contain images/ and groundtruth/, and be writable
paths.dsetRootParis= strcat(datasets_directory,'paris/'); % should contain images/ (with subfolders defense, eiffel, etc), groundtruth/ and corrupt.txt, and be writable
paths.dsetRootHolidays= strcat(datasets_directory,'Holidays/'); % should contain jpg/ for the original holidays, or jpg_rotated/ for rotated Holidays, and be writable
% --- our networks
% models used in our paper, download them from our research page
paths.ourCNNs= strcat(datasets_directory,'models_v103_pre-trained/');
% --- pretrained networks
% off-the-shelf networks trained on other tasks, available from the MatConvNet
% website: http://www.vlfeat.org/matconvnet/pretrained/
% XPS
paths.pretrainedCNNs= strcat(datasets_directory,'netvlad-original/pretrained/');
% --- initialization data (off-the-shelf descriptors, clusters)
% Not necessary: these can be computed automatically, but it is recommended
% in order to use the same initialization as we used in our work
paths.initData= strcat(datasets_directory,'netvlad-pre-data/initdata/');
% --- output directory
% XPS
paths.outPrefix= strcat(datasets_directory,'netvlad-original-output/');
end