-
Notifications
You must be signed in to change notification settings - Fork 87
/
search.py
248 lines (212 loc) · 8.11 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# -*- coding: utf-8 -*-
# @Date : 2019-09-25
# @Author : Xinyu Gong ([email protected])
# @Link : None
# @Version : 0.0
from __future__ import absolute_import, division, print_function
import os
import torch
import torch.nn as nn
from tensorboardX import SummaryWriter
from tqdm import tqdm
import cfg
import datasets
import models_search # noqa
from functions import get_topk_arch_hidden, train_controller, train_shared
from utils.fid_score import check_or_download_inception, create_inception_graph
from utils.inception_score import _init_inception
from utils.utils import create_logger, RunningStats, save_checkpoint, set_log_dir
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
class GrowCtrler(object):
def __init__(self, grow_step1, grow_step2):
self.grow_step1 = grow_step1
self.grow_step2 = grow_step2
def cur_stage(self, search_iter):
"""
Return current stage.
:param epoch: current epoch.
:return: current stage
"""
if search_iter < self.grow_step1:
return 0
elif self.grow_step1 <= search_iter < self.grow_step2:
return 1
else:
return 2
def create_ctrler(args, cur_stage, weights_init):
controller = eval("models_search." + args.controller + ".Controller")(
args=args, cur_stage=cur_stage
).cuda()
controller.apply(weights_init)
ctrl_optimizer = torch.optim.Adam(
filter(lambda p: p.requires_grad, controller.parameters()),
args.ctrl_lr,
(args.beta1, args.beta2),
)
return controller, ctrl_optimizer
def create_shared_gan(args, weights_init):
gen_net = eval("models_search." + args.gen_model + ".Generator")(args=args).cuda()
dis_net = eval("models_search." + args.dis_model + ".Discriminator")(
args=args
).cuda()
gen_net.apply(weights_init)
dis_net.apply(weights_init)
gen_optimizer = torch.optim.Adam(
filter(lambda p: p.requires_grad, gen_net.parameters()),
args.g_lr,
(args.beta1, args.beta2),
)
dis_optimizer = torch.optim.Adam(
filter(lambda p: p.requires_grad, dis_net.parameters()),
args.d_lr,
(args.beta1, args.beta2),
)
return gen_net, dis_net, gen_optimizer, dis_optimizer
def main():
args = cfg.parse_args()
torch.cuda.manual_seed(args.random_seed)
# set tf env
_init_inception()
inception_path = check_or_download_inception(None)
create_inception_graph(inception_path)
# weight init
def weights_init(m):
classname = m.__class__.__name__
if classname.find("Conv2d") != -1:
if args.init_type == "normal":
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif args.init_type == "orth":
nn.init.orthogonal_(m.weight.data)
elif args.init_type == "xavier_uniform":
nn.init.xavier_uniform(m.weight.data, 1.0)
else:
raise NotImplementedError(
"{} unknown inital type".format(args.init_type)
)
elif classname.find("BatchNorm2d") != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0.0)
gen_net, dis_net, gen_optimizer, dis_optimizer = create_shared_gan(
args, weights_init
)
# set grow controller
grow_ctrler = GrowCtrler(args.grow_step1, args.grow_step2)
# initial
start_search_iter = 0
# set writer
if args.load_path:
print(f"=> resuming from {args.load_path}")
assert os.path.exists(args.load_path)
checkpoint_file = os.path.join(args.load_path, "Model", "checkpoint.pth")
assert os.path.exists(checkpoint_file)
checkpoint = torch.load(checkpoint_file)
# set controller && its optimizer
cur_stage = checkpoint["cur_stage"]
controller, ctrl_optimizer = create_ctrler(args, cur_stage, weights_init)
start_search_iter = checkpoint["search_iter"]
gen_net.load_state_dict(checkpoint["gen_state_dict"])
dis_net.load_state_dict(checkpoint["dis_state_dict"])
controller.load_state_dict(checkpoint["ctrl_state_dict"])
gen_optimizer.load_state_dict(checkpoint["gen_optimizer"])
dis_optimizer.load_state_dict(checkpoint["dis_optimizer"])
ctrl_optimizer.load_state_dict(checkpoint["ctrl_optimizer"])
prev_archs = checkpoint["prev_archs"]
prev_hiddens = checkpoint["prev_hiddens"]
args.path_helper = checkpoint["path_helper"]
logger = create_logger(args.path_helper["log_path"])
logger.info(
f"=> loaded checkpoint {checkpoint_file} (search iteration {start_search_iter})"
)
else:
# create new log dir
assert args.exp_name
args.path_helper = set_log_dir("logs", args.exp_name)
logger = create_logger(args.path_helper["log_path"])
prev_archs = None
prev_hiddens = None
# set controller && its optimizer
cur_stage = 0
controller, ctrl_optimizer = create_ctrler(args, cur_stage, weights_init)
# set up data_loader
dataset = datasets.ImageDataset(args, 2 ** (cur_stage + 3))
train_loader = dataset.train
logger.info(args)
writer_dict = {
"writer": SummaryWriter(args.path_helper["log_path"]),
"controller_steps": start_search_iter * args.ctrl_step,
}
g_loss_history = RunningStats(args.dynamic_reset_window)
d_loss_history = RunningStats(args.dynamic_reset_window)
# train loop
for search_iter in tqdm(
range(int(start_search_iter), int(args.max_search_iter)), desc="search progress"
):
logger.info(f"<start search iteration {search_iter}>")
if search_iter == args.grow_step1 or search_iter == args.grow_step2:
# save
cur_stage = grow_ctrler.cur_stage(search_iter)
logger.info(f"=> grow to stage {cur_stage}")
prev_archs, prev_hiddens = get_topk_arch_hidden(
args, controller, gen_net, prev_archs, prev_hiddens
)
# grow section
del controller
del ctrl_optimizer
controller, ctrl_optimizer = create_ctrler(args, cur_stage, weights_init)
dataset = datasets.ImageDataset(args, 2 ** (cur_stage + 3))
train_loader = dataset.train
dynamic_reset = train_shared(
args,
gen_net,
dis_net,
g_loss_history,
d_loss_history,
controller,
gen_optimizer,
dis_optimizer,
train_loader,
prev_hiddens=prev_hiddens,
prev_archs=prev_archs,
)
train_controller(
args,
controller,
ctrl_optimizer,
gen_net,
prev_hiddens,
prev_archs,
writer_dict,
)
if dynamic_reset:
logger.info("re-initialize share GAN")
del gen_net, dis_net, gen_optimizer, dis_optimizer
gen_net, dis_net, gen_optimizer, dis_optimizer = create_shared_gan(
args, weights_init
)
save_checkpoint(
{
"cur_stage": cur_stage,
"search_iter": search_iter + 1,
"gen_model": args.gen_model,
"dis_model": args.dis_model,
"controller": args.controller,
"gen_state_dict": gen_net.state_dict(),
"dis_state_dict": dis_net.state_dict(),
"ctrl_state_dict": controller.state_dict(),
"gen_optimizer": gen_optimizer.state_dict(),
"dis_optimizer": dis_optimizer.state_dict(),
"ctrl_optimizer": ctrl_optimizer.state_dict(),
"prev_archs": prev_archs,
"prev_hiddens": prev_hiddens,
"path_helper": args.path_helper,
},
False,
args.path_helper["ckpt_path"],
)
final_archs, _ = get_topk_arch_hidden(
args, controller, gen_net, prev_archs, prev_hiddens
)
logger.info(f"discovered archs: {final_archs}")
if __name__ == "__main__":
main()