-
Notifications
You must be signed in to change notification settings - Fork 4
/
train.py
65 lines (53 loc) · 2.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import time
import torch
from data.mmhand_dataset_data_loader import MMHandDatasetDataLoader
from models.MMHandModel import MMHandModel
from options.train_options import TrainOptions
from util.visualizer import Visualizer
if __name__ == "__main__":
opt = TrainOptions().parse()
data_loader = MMHandDatasetDataLoader(opt)
torch.cuda.set_device(opt.local_rank)
model = MMHandModel(opt)
model.pprint('#training images = %d' % len(data_loader))
model.pprint("model [%s] was created" % (model.name()))
visualizer = Visualizer(opt)
total_steps = 0
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
epoch_iter = 0
for i, data in enumerate(data_loader):
iter_start_time = time.time()
visualizer.reset()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data)
model.optimize_parameters()
if total_steps % opt.display_freq == 0 and model.master:
save_result = total_steps % opt.update_html_freq == 0
visualizer.display_current_results(model.get_current_visuals(),
epoch, save_result)
if total_steps % opt.print_freq == 0 and model.master:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
if opt.display_id > 0:
visualizer.plot_current_errors(
epoch,
float(epoch_iter) / dataset_size, opt, errors)
if total_steps % opt.save_latest_freq == 0 and model.master:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.save('latest')
if opt.distributed:
data_loader.set_epoch(epoch)
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
if model.master:
model.save('latest')
model.save(epoch)
model.pprint('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay,
time.time() - epoch_start_time))
model.update_learning_rate()