-
Notifications
You must be signed in to change notification settings - Fork 2
/
metrics.py
66 lines (47 loc) · 1.58 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
### metrics.py
# Evaluation metrics.
###
import numpy as np
def percls_accuracy(all_pred, all_label, num_class=0):
"""Computes per class accuracy"""
num_class = len(set(all_label)) if num_class == 0 else num_class
all_pred = np.asarray(all_pred)
all_label = np.asarray(all_label)
cls_acc = np.zeros([num_class])
for i in range(num_class):
idx = (all_label == i)
if idx.sum() > 0:
cls_acc[i] = (all_pred[idx] == all_label[idx]).mean() * 100.0
return cls_acc
def bin_accuracy(output, target):
"""Computes the binary classification accuracy"""
pred = (output > 0.5).long()
acc = (pred == target).float().mean() * 100.0
return acc
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
#correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
correct_k = correct[:k].float().sum()
res.append(correct_k.mul_(100.0 / batch_size).item())
return res
class averageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count