forked from colmap/colmap
-
Notifications
You must be signed in to change notification settings - Fork 15
/
cost_functions.h
executable file
Β·331 lines (277 loc) Β· 11.2 KB
/
cost_functions.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
// Copyright (c) 2018, ETH Zurich and UNC Chapel Hill.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: Johannes L. Schoenberger (jsch-at-demuc-dot-de)
#ifndef COLMAP_SRC_BASE_COST_FUNCTIONS_H_
#define COLMAP_SRC_BASE_COST_FUNCTIONS_H_
#include <Eigen/Core>
#include <ceres/ceres.h>
#include <ceres/rotation.h>
namespace colmap {
// Standard bundle adjustment cost function for variable
// camera pose and calibration and point parameters.
template <typename CameraModel>
class BundleAdjustmentCostFunction {
public:
explicit BundleAdjustmentCostFunction(const Eigen::Vector2d& point2D)
: observed_x_(point2D(0)), observed_y_(point2D(1)) {}
static ceres::CostFunction* Create(const Eigen::Vector2d& point2D) {
return (new ceres::AutoDiffCostFunction<
BundleAdjustmentCostFunction<CameraModel>, 2, 4, 3, 3,
CameraModel::kNumParams>(
new BundleAdjustmentCostFunction(point2D)));
}
template <typename T>
bool operator()(const T* const qvec, const T* const tvec,
const T* const point3D, const T* const camera_params,
T* residuals) const {
// Rotate and translate.
T projection[3];
ceres::UnitQuaternionRotatePoint(qvec, point3D, projection);
projection[0] += tvec[0];
projection[1] += tvec[1];
projection[2] += tvec[2];
// Project to image plane.
projection[0] /= projection[2];
projection[1] /= projection[2];
// Distort and transform to pixel space.
CameraModel::WorldToImage(camera_params, projection[0], projection[1],
&residuals[0], &residuals[1]);
// Re-projection error.
residuals[0] -= T(observed_x_);
residuals[1] -= T(observed_y_);
return true;
}
private:
const double observed_x_;
const double observed_y_;
};
// Bundle adjustment cost function for variable
// camera calibration and point parameters, and fixed camera pose.
template <typename CameraModel>
class BundleAdjustmentConstantPoseCostFunction {
public:
BundleAdjustmentConstantPoseCostFunction(const Eigen::Vector4d& qvec,
const Eigen::Vector3d& tvec,
const Eigen::Vector2d& point2D)
: qw_(qvec(0)),
qx_(qvec(1)),
qy_(qvec(2)),
qz_(qvec(3)),
tx_(tvec(0)),
ty_(tvec(1)),
tz_(tvec(2)),
observed_x_(point2D(0)),
observed_y_(point2D(1)) {}
static ceres::CostFunction* Create(const Eigen::Vector4d& qvec,
const Eigen::Vector3d& tvec,
const Eigen::Vector2d& point2D) {
return (new ceres::AutoDiffCostFunction<
BundleAdjustmentConstantPoseCostFunction<CameraModel>, 2, 3,
CameraModel::kNumParams>(
new BundleAdjustmentConstantPoseCostFunction(qvec, tvec, point2D)));
}
template <typename T>
bool operator()(const T* const point3D, const T* const camera_params,
T* residuals) const {
const T qvec[4] = {T(qw_), T(qx_), T(qy_), T(qz_)};
// Rotate and translate.
T projection[3];
ceres::UnitQuaternionRotatePoint(qvec, point3D, projection);
projection[0] += T(tx_);
projection[1] += T(ty_);
projection[2] += T(tz_);
// Project to image plane.
projection[0] /= projection[2];
projection[1] /= projection[2];
// Distort and transform to pixel space.
CameraModel::WorldToImage(camera_params, projection[0], projection[1],
&residuals[0], &residuals[1]);
// Re-projection error.
residuals[0] -= T(observed_x_);
residuals[1] -= T(observed_y_);
return true;
}
private:
const double qw_;
const double qx_;
const double qy_;
const double qz_;
const double tx_;
const double ty_;
const double tz_;
const double observed_x_;
const double observed_y_;
};
// Rig bundle adjustment cost function for variable camera pose and calibration
// and point parameters. Different from the standard bundle adjustment function,
// this cost function is suitable for camera rigs with consistent relative poses
// of the cameras within the rig. The cost function first projects points into
// the local system of the camera rig and then into the local system of the
// camera within the rig.
template <typename CameraModel>
class RigBundleAdjustmentCostFunction {
public:
explicit RigBundleAdjustmentCostFunction(const Eigen::Vector2d& point2D)
: observed_x_(point2D(0)), observed_y_(point2D(1)) {}
static ceres::CostFunction* Create(const Eigen::Vector2d& point2D) {
return (new ceres::AutoDiffCostFunction<
RigBundleAdjustmentCostFunction<CameraModel>, 2, 4, 3, 4, 3, 3,
CameraModel::kNumParams>(
new RigBundleAdjustmentCostFunction(point2D)));
}
template <typename T>
bool operator()(const T* const rig_qvec, const T* const rig_tvec,
const T* const rel_qvec, const T* const rel_tvec,
const T* const point3D, const T* const camera_params,
T* residuals) const {
// Concatenate rotations.
T qvec[4];
ceres::QuaternionProduct(rel_qvec, rig_qvec, qvec);
// Concatenate translations.
T tvec[3];
ceres::UnitQuaternionRotatePoint(rel_qvec, rig_tvec, tvec);
tvec[0] += rel_tvec[0];
tvec[1] += rel_tvec[1];
tvec[2] += rel_tvec[2];
// Rotate and translate.
T projection[3];
ceres::UnitQuaternionRotatePoint(qvec, point3D, projection);
projection[0] += tvec[0];
projection[1] += tvec[1];
projection[2] += tvec[2];
// Project to image plane.
projection[0] /= projection[2];
projection[1] /= projection[2];
// Distort and transform to pixel space.
CameraModel::WorldToImage(camera_params, projection[0], projection[1],
&residuals[0], &residuals[1]);
// Re-projection error.
residuals[0] -= T(observed_x_);
residuals[1] -= T(observed_y_);
return true;
}
private:
const double observed_x_;
const double observed_y_;
};
// Cost function for refining two-view geometry based on the Sampson-Error.
//
// First pose is assumed to be located at the origin with 0 rotation. Second
// pose is assumed to be on the unit sphere around the first pose, i.e. the
// pose of the second camera is parameterized by a 3D rotation and a
// 3D translation with unit norm. `tvec` is therefore over-parameterized as is
// and should be down-projected using `HomogeneousVectorParameterization`.
class RelativePoseCostFunction {
public:
RelativePoseCostFunction(const Eigen::Vector2d& x1, const Eigen::Vector2d& x2)
: x1_(x1(0)), y1_(x1(1)), x2_(x2(0)), y2_(x2(1)) {}
static ceres::CostFunction* Create(const Eigen::Vector2d& x1,
const Eigen::Vector2d& x2) {
return (new ceres::AutoDiffCostFunction<RelativePoseCostFunction, 1, 4, 3>(
new RelativePoseCostFunction(x1, x2)));
}
template <typename T>
bool operator()(const T* const qvec, const T* const tvec,
T* residuals) const {
Eigen::Matrix<T, 3, 3, Eigen::RowMajor> R;
ceres::QuaternionToRotation(qvec, R.data());
// Matrix representation of the cross product t x R.
Eigen::Matrix<T, 3, 3> t_x;
t_x << T(0), -tvec[2], tvec[1], tvec[2], T(0), -tvec[0], -tvec[1], tvec[0],
T(0);
// Essential matrix.
const Eigen::Matrix<T, 3, 3> E = t_x * R;
// Homogeneous image coordinates.
const Eigen::Matrix<T, 3, 1> x1_h(T(x1_), T(y1_), T(1));
const Eigen::Matrix<T, 3, 1> x2_h(T(x2_), T(y2_), T(1));
// Squared sampson error.
const Eigen::Matrix<T, 3, 1> Ex1 = E * x1_h;
const Eigen::Matrix<T, 3, 1> Etx2 = E.transpose() * x2_h;
const T x2tEx1 = x2_h.transpose() * Ex1;
residuals[0] = x2tEx1 * x2tEx1 /
(Ex1(0) * Ex1(0) + Ex1(1) * Ex1(1) + Etx2(0) * Etx2(0) +
Etx2(1) * Etx2(1));
return true;
}
private:
const double x1_;
const double y1_;
const double x2_;
const double y2_;
};
// Ceres CostFunctor used for SfM pose center to GPS pose center minimization
// Ref: openMVG/sfm/sfm_data_BA_ceres.cpp
struct PoseCenterConstraintCostFunction
{
Eigen::Vector3d weight_;
Eigen::Vector3d pose_center_constraint_;
PoseCenterConstraintCostFunction
(
const Eigen::Vector3d & center,
const Eigen::Vector3d & weight
): weight_(weight), pose_center_constraint_(center)
{
}
static ceres::CostFunction* Create(const Eigen::Vector3d& pose_center_constraint,
const Eigen::Vector3d& weight) {
return (new ceres::AutoDiffCostFunction<PoseCenterConstraintCostFunction, 3, 4, 3>(
new PoseCenterConstraintCostFunction(pose_center_constraint, weight)));
}
template <typename T> bool
operator()
(
const T* const qvec, // qcw
const T* const tvec, // tcw
T* residuals
)
const
{
using Vec3T = Eigen::Matrix<T,3,1>;
Vec3T pose_center; // twc_sfm
// Rotate the point according the camera rotation
// Inverse rotation as conjugate quaternion.
const Eigen::Quaternion<T> qcw(qvec[0], -qvec[1], -qvec[2], -qvec[3]);
Vec3T tcw(tvec[0],tvec[1],tvec[2]);
pose_center = qcw * -tcw;
// Eigen::Matrix<T, 3, 3, Eigen::RowMajor> R; //Rcw
// ceres::QuaternionToRotation(qvec, R.data());
// Eigen::Matrix<T, 3, 3, Eigen::RowMajor> Rwc;
// Rwc = R.inverse();
// T qwc[4];
// ceres::RotationMatrixToQuaternion(Rwc.data(),qwc);
// ceres::QuaternionRotatePoint(qwc,tvec,pose_center.data());
// pose_center = pose_center * T(-1); //twc
Eigen::Map<Vec3T> residuals_eigen(residuals);
residuals_eigen = weight_.cast<T>().cwiseProduct(pose_center - pose_center_constraint_.cast<T>());
return true;
}
};
} // namespace colmap
#endif // COLMAP_SRC_BASE_COST_FUNCTIONS_H_