Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

YoloR-CSP Test with yolor-csp.cfg not working #281

Open
GabrielFerrante opened this issue Dec 5, 2022 · 0 comments
Open

YoloR-CSP Test with yolor-csp.cfg not working #281

GabrielFerrante opened this issue Dec 5, 2022 · 0 comments

Comments

@GabrielFerrante
Copy link

Hi everyone

I'm using the command for test in my model trained.

python3 test.py --data ./BRA-Dataset.yaml --img 412 --batch 8 --device 0 --cfg cfg/yolor_csp.cfg --weights ../../PESOS1/bestYoloR-CSP.pt --name yolor_csp_val --verbose --names data/BRA.names

I'm configured the yolor_csp.cfg for test, modifying the filters for 30 (num classes(5) + 5 * 3), the number classes 5 and, implicit_mul with 30.

But I'm not have a Precision, Recall and, small mAP. However, while I executing test for yolor-p6 model, working not problems.

The csp.cfg working ? I see that the csp.cfg not have a YoloR layer in final part of file cfg. Foremore, the csp.cfg have a 3 implict_mul, different in comparison with p6.cfg.

My Output:
Model Summary: 529 layers, 52519444 parameters, 52519444 gradients
WARNING: --img-size 412 must be multiple of max stride 64, updating to 448
/home/usp/anaconda3/envs/yoloEnv/lib/python3.8/site-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)
return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
Scanning labels ../../BRA-Dataset/labels/val.cache3 (363 found, 0 missing, 0 empty, 0 duplicate, for 363 images): 363it [00:00, 16860.82it/s]
Class Images Targets P R [email protected] [email protected]:.95: 50%|██████████████████████████████ | 23/46 [00:02<00:01, 11.95it/s]libpng warning: iCCP: known incorrect sRGB profile
Class Images Targets P R [email protected] [email protected]:.95: 100%|████████████████████████████████████████████████████████████| 46/46 [00:04<00:00, 10.71it/s]
all 363 403 0 0 0.00315 0.000539
Anta 363 84 0 0 0.00095 0.000168
Jaguarundi 363 68 0 0 0.00144 0.000282
LoboGuara 363 82 0 0 0.00157 0.000302
OncaParda 363 101 0 0 0.00474 0.000945
TamanduaBandeira 363 68 0 0 0.00704 0.000998
Speed: 6.5/2.9/9.5 ms inference/NMS/total per 448x448 image at batch-size 8
Results saved to runs/test/yolor_csp_val2

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant