Part-based Semantic Transform for Few-shot Semantic Segmentation
networks/
contains the implementation of the PST(PST_net.py
);models/
contains the backbone, semantic decomposition module;utils/
contains the semantic match module;
python == 3.7, pytorch1.0,
torchvision, pillow, opencv-python, pandas, matplotlib, scikit-image
Performance of k shot semantic segmentation on Pascal-5i
Setting | Backbone | Method | Pascal-50 | Pascal-51 | Pascal-52 | Pascal-53 | Mean |
1-shot | VGG16 | PST | 48.89 | 64.65 | 51.44 | 47.52 | 53.12 |
Resnet50 | PMMs | 51.98 | 67.54 | 51.54 | 49.81 | 55.22 | |
PST | 52.66 | 67.13 | 53.23 | 51.48 | 56.14 | ||
5-shot | VGG16 | PST | 51.14 | 65.27 | 52.83 | 48.51 | 54.44 |
Resnet50 | PMMs | 55.03 | 68.22 | 52.89 | 51.11 | 56.81 | |
PST | 54.93 | 68.69 | 53.77 | 51.76 | 57.29 |
Performance of k shot semantic segmentation on MS COCO
Setting | Method | COCO-200 | COCO-201 | COCO-202 | COCO-203 | Mean |
1-shot | PMMs | 29.28 | 34.81 | 27.08 | 27.27 | 29.61 |
PST | 30.37 | 37.51 | 30.22 | 32.56 | 32.67 | |
5-shot | PMMs | 33.00 | 40.55 | 30.29 | 33.27 | 34.28 |
PST | 34.06 | 42.20 | 34.74 | 38.95 | 37.49 |