forked from gdscewha-3rd/Project-ADNI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
densenet3d.py
214 lines (182 loc) · 8.53 KB
/
densenet3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
## =================================== ##
## ======= DensNet ======= ##
## =================================== ##
# model
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary
from torch import optim
# dataset and transformation
from torchvision import datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import os
# display images
from torchvision import utils
import matplotlib.pyplot as plt
# utils
import numpy as np
from torchsummary import summary
import time
import copy
## ========= DenseNet Model ========= #
#(ref) explanation - https://wingnim.tistory.com/39
#(ref) densenet3d - https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py
#(ref) pytorch - https://pytorch.org/vision/0.8/_modules/torchvision/models/densenet.html
class _DenseLayer(nn.Sequential):
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
super().__init__()
## DenseNet Composite function: BN -> relu -> 3x3 conv
# 1
self.add_module('norm1', nn.BatchNorm3d(num_input_features))
self.add_module('relu1', nn.ReLU(inplace=True))
self.add_module(
'conv1',
nn.Conv3d(num_input_features,
bn_size * growth_rate,
kernel_size=1,
stride=1,
bias=False))
# 2
self.add_module('norm2', nn.BatchNorm3d(bn_size * growth_rate))
self.add_module('relu2', nn.ReLU(inplace=True))
self.add_module(
'conv2',
nn.Conv3d(bn_size * growth_rate,
growth_rate,
kernel_size=3,
stride=1,
padding=1,
bias=False))
self.drop_rate = float(drop_rate)
#self.memory_efficient = memory_efficient
def forward(self, x):
new_features = super().forward(x)
if self.drop_rate > 0:
new_features = F.dropout(new_features,
p=self.drop_rate,
training=self.training)
return torch.cat([x, new_features], 1) ## **
class _DenseBlock(nn.Sequential):
# receive and concatenate the outputs of all previous blocks as inputs
# growth rate? the number of channel of feature map in each layer
def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
super().__init__()
for i in range(num_layers):
layer = _DenseLayer(num_input_features + i * growth_rate,
growth_rate, bn_size, drop_rate)
class _Transition(nn.Sequential):
## convolution + pooling between block
# in paper: bach normalization -> 1x1 conv layer -> 2x2 average pooling layer
def __init__(self, num_input_features, num_output_features):
super().__init__()
self.add_module('norm', nn.BatchNorm3d(num_input_features))
self.add_module('relu', nn.ReLU(inplace=True))
self.add_module('conv',
nn.Conv3d(num_input_features,
num_output_features,
kernel_size=1,
stride=1,
bias=False))
self.add_module('pool', nn.AvgPool3d(kernel_size=2, stride=2))
class DenseNet(nn.Module):
"""Densenet-BC model class
Args:
growth_rate (int) - how many filters to add each layer (k in paper)
block_config (list of 4 ints) - how many layers in each pooling block
num_init_features (int) - the number of filters to learn in the first convolution layer
bn_size (int) - multiplicative factor for number of bottle neck layers
(i.e. bn_size * k features in the bottleneck layer)
drop_rate (float) - dropout rate after each dense layer
num_classes (int) - number of classification classes
"""
def __init__(self,
n_input_channels=3,conv1_t_size=7,conv1_t_stride=1,no_max_pool=False,
growth_rate=32,block_config=(6, 12, 24, 16),num_init_features=64,
bn_size=4,drop_rate=0,num_classes=1000):
super(DenseNet, self).__init__()
# First convolution
self.features = [('conv1',
nn.Conv3d(n_input_channels,
num_init_features,
kernel_size=(conv1_t_size, 7, 7),
stride=(conv1_t_stride, 2, 2),
padding=(conv1_t_size // 2, 3, 3),
bias=False)),
('norm1', nn.BatchNorm3d(num_init_features)),
('relu1', nn.ReLU(inplace=True))]
if not no_max_pool:
self.features.append(
('pool1', nn.MaxPool3d(kernel_size=3, stride=2, padding=1)))
self.features = nn.Sequential(OrderedDict(self.features))
# Each denseblock
num_features = num_init_features
for i, num_layers in enumerate(block_config):
block = _DenseBlock(num_layers=num_layers,
num_input_features=num_features,
bn_size=bn_size,
growth_rate=growth_rate,
drop_rate=drop_rate)
self.features.add_module('denseblock{}'.format(i + 1), block)
num_features = num_features + num_layers * growth_rate
if i != len(block_config) - 1:
trans = _Transition(num_input_features=num_features,
num_output_features=num_features // 2)
self.features.add_module('transition{}'.format(i + 1), trans)
num_features = num_features // 2
# Final batch norm
self.features.add_module('norm5', nn.BatchNorm3d(num_features))
for m in self.modules():
if isinstance(m, nn.Conv3d):
m.weight = nn.init.kaiming_normal(m.weight, mode='fan_out')
elif isinstance(m, nn.BatchNorm3d) or isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
# Linear layer
self.classifier = nn.Linear(num_features, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv3d):
nn.init.kaiming_normal_(m.weight, mode='fan_out',nonlinearity='relu')
elif isinstance(m, nn.BatchNorm3d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.constant_(m.bias, 0)
def forward(self, x):
features = self.features(x)
out = F.relu(features, inplace=True)
out = F.adaptive_avg_pool3d(out, output_size=(1, 1, 1)).view(features.size(0), -1) # **
out = self.classifier(out)
return out
def generate_model(model_depth, **kwargs):
assert model_depth in [121, 169, 201, 264]
if model_depth == 121:
model = DenseNet(num_init_features=64,
growth_rate=32,
block_config=(6, 12, 24, 16),
**kwargs)
elif model_depth == 169:
model = DenseNet(num_init_features=64,
growth_rate=32,
block_config=(6, 12, 32, 32),
**kwargs)
elif model_depth == 201:
model = DenseNet(num_init_features=64,
growth_rate=32,
block_config=(6, 12, 48, 32),
**kwargs)
elif model_depth == 264:
model = DenseNet(num_init_features=64,
growth_rate=32,
block_config=(6, 12, 64, 48),
**kwargs)
return model
def densenet121(pretrained: bool = False, progress: bool = True, **kwargs):
return _densenet("densenet121", 32, (6, 12, 24, 16), 64, pretrained, progress, **kwargs)
def densenet161(pretrained: bool = False, progress: bool = True, **kwargs):
return _densenet("densenet169", 32, (6, 12, 32, 32), 64, pretrained, progress, **kwargs)
def densenet169(pretrained: bool = False, progress: bool = True, **kwargs):
return _densenet("densenet169", 32, (6, 12, 32, 32), 64, pretrained, progress, **kwargs)
def densenet201(pretrained: bool = False, progress: bool = True, **kwargs):
return _densenet("densenet201", 32, (6, 12, 48, 32), 64, pretrained, progress, **kwargs)