-
Notifications
You must be signed in to change notification settings - Fork 1
/
config_reader.py
36 lines (30 loc) · 1.3 KB
/
config_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
'''contains the parameters that are essential for the model to predict the key points.
Keeping the specifications of the system in mind.'''
from configobj import ConfigObj
import numpy as np
def config_reader():
config = ConfigObj('config')
param = config['param']
model_id = param['modelID']
model = config['models'][model_id]
model['boxsize'] = int(model['boxsize'])
model['stride'] = int(model['stride'])
model['padValue'] = int(model['padValue'])
#param['starting_range'] = float(param['starting_range'])
#param['ending_range'] = float(param['ending_range'])
param['octave'] = int(param['octave'])
param['use_gpu'] = int(param['use_gpu'])
param['starting_range'] = float(param['starting_range'])
param['ending_range'] = float(param['ending_range'])
param['scale_search'] = map(float, param['scale_search'])
param['thre1'] = float(param['thre1'])
param['thre2'] = float(param['thre2'])
param['thre3'] = float(param['thre3'])
param['mid_num'] = int(param['mid_num'])
param['min_num'] = int(param['min_num'])
param['crop_ratio'] = float(param['crop_ratio'])
param['bbox_ratio'] = float(param['bbox_ratio'])
param['GPUdeviceNumber'] = int(param['GPUdeviceNumber'])
return param, model
if __name__ == "__main__":
config_reader()