forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
456 lines (388 loc) · 15.4 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
from setuptools import setup, Extension, distutils, Command, find_packages
import setuptools.command.build_ext
import setuptools.command.install
import setuptools.command.develop
import setuptools.command.build_py
import distutils.unixccompiler
import distutils.command.build
import distutils.command.clean
import platform
import subprocess
import shutil
import sys
import os
from tools.setup_helpers.env import check_env_flag
from tools.setup_helpers.cuda import WITH_CUDA, CUDA_HOME
from tools.setup_helpers.cudnn import WITH_CUDNN, CUDNN_LIB_DIR, CUDNN_INCLUDE_DIR
from tools.setup_helpers.split_types import split_types
DEBUG = check_env_flag('DEBUG')
WITH_DISTRIBUTED = check_env_flag('WITH_DISTRIBUTED')
WITH_DISTRIBUTED_MW = WITH_DISTRIBUTED and check_env_flag('WITH_DISTRIBUTED_MW')
WITH_NCCL = WITH_CUDA and platform.system() != 'Darwin'
SYSTEM_NCCL = False
################################################################################
# Monkey-patch setuptools to compile in parallel
################################################################################
original_link = distutils.unixccompiler.UnixCCompiler.link
def parallelCCompile(self, sources, output_dir=None, macros=None,
include_dirs=None, debug=0, extra_preargs=None,
extra_postargs=None, depends=None):
# those lines are copied from distutils.ccompiler.CCompiler directly
macros, objects, extra_postargs, pp_opts, build = self._setup_compile(
output_dir, macros, include_dirs, sources, depends, extra_postargs)
cc_args = self._get_cc_args(pp_opts, debug, extra_preargs)
# compile using a thread pool
import multiprocessing.pool
def _single_compile(obj):
src, ext = build[obj]
self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts)
num_jobs = multiprocessing.cpu_count()
multiprocessing.pool.ThreadPool(num_jobs).map(_single_compile, objects)
return objects
def patched_link(self, *args, **kwargs):
_cxx = self.compiler_cxx
self.compiler_cxx = None
result = original_link(self, *args, **kwargs)
self.compiler_cxx = _cxx
return result
distutils.ccompiler.CCompiler.compile = parallelCCompile
distutils.unixccompiler.UnixCCompiler.link = patched_link
################################################################################
# Custom build commands
################################################################################
class build_deps(Command):
user_options = []
def initialize_options(self):
pass
def finalize_options(self):
pass
def run(self):
from tools.nnwrap import generate_wrappers as generate_nn_wrappers
build_all_cmd = ['bash', 'torch/lib/build_all.sh']
if WITH_CUDA:
build_all_cmd += ['--with-cuda']
if WITH_NCCL and not SYSTEM_NCCL:
build_all_cmd += ['--with-nccl']
if WITH_DISTRIBUTED:
build_all_cmd += ['--with-distributed']
if subprocess.call(build_all_cmd) != 0:
sys.exit(1)
generate_nn_wrappers()
class build_module(Command):
user_options = []
def initialize_options(self):
pass
def finalize_options(self):
pass
def run(self):
self.run_command('build_py')
self.run_command('build_ext')
class build_py(setuptools.command.build_py.build_py):
def run(self):
self.create_version_file()
setuptools.command.build_py.build_py.run(self)
@staticmethod
def create_version_file():
global version, cwd
print('-- Building version ' + version)
version_path = os.path.join(cwd, 'torch', 'version.py')
with open(version_path, 'w') as f:
f.write("__version__ = '{}'\n".format(version))
class develop(setuptools.command.develop.develop):
def run(self):
build_py.create_version_file()
setuptools.command.develop.develop.run(self)
class build_ext(setuptools.command.build_ext.build_ext):
def run(self):
# Print build options
if WITH_NUMPY:
print('-- Building with NumPy bindings')
else:
print('-- NumPy not found')
if WITH_CUDNN:
print('-- Detected cuDNN at ' + CUDNN_LIB_DIR + ', ' + CUDNN_INCLUDE_DIR)
else:
print('-- Not using cuDNN')
if WITH_CUDA:
print('-- Detected CUDA at ' + CUDA_HOME)
else:
print('-- Not using CUDA')
if WITH_NCCL and SYSTEM_NCCL:
print('-- Using system provided NCCL library')
elif WITH_NCCL:
print('-- Building NCCL library')
else:
print('-- Not using NCCL')
# cwrap depends on pyyaml, so we can't import it earlier
from tools.cwrap import cwrap
from tools.cwrap.plugins.THPPlugin import THPPlugin
from tools.cwrap.plugins.ArgcountSortPlugin import ArgcountSortPlugin
from tools.cwrap.plugins.AutoGPU import AutoGPU
from tools.cwrap.plugins.BoolOption import BoolOption
from tools.cwrap.plugins.KwargsPlugin import KwargsPlugin
from tools.cwrap.plugins.NullableArguments import NullableArguments
from tools.cwrap.plugins.CuDNNPlugin import CuDNNPlugin
from tools.cwrap.plugins.WrapDim import WrapDim
thp_plugin = THPPlugin()
cwrap('torch/csrc/generic/TensorMethods.cwrap', plugins=[
BoolOption(), thp_plugin, AutoGPU(condition='IS_CUDA'),
ArgcountSortPlugin(), KwargsPlugin(), WrapDim()
])
cwrap('torch/csrc/cudnn/cuDNN.cwrap', plugins=[
CuDNNPlugin(), NullableArguments()
])
# It's an old-style class in Python 2.7...
setuptools.command.build_ext.build_ext.run(self)
class build(distutils.command.build.build):
sub_commands = [
('build_deps', lambda self: True),
] + distutils.command.build.build.sub_commands
class install(setuptools.command.install.install):
def run(self):
if not self.skip_build:
self.run_command('build_deps')
setuptools.command.install.install.run(self)
class clean(distutils.command.clean.clean):
def run(self):
import glob
with open('.gitignore', 'r') as f:
ignores = f.read()
for wildcard in filter(bool, ignores.split('\n')):
for filename in glob.glob(wildcard):
try:
os.remove(filename)
except OSError:
shutil.rmtree(filename, ignore_errors=True)
# It's an old-style class in Python 2.7...
distutils.command.clean.clean.run(self)
################################################################################
# Configure compile flags
################################################################################
include_dirs = []
library_dirs = []
extra_link_args = []
extra_compile_args = ['-std=c++11', '-Wno-write-strings']
if os.getenv('PYTORCH_BINARY_BUILD') and platform.system() == 'Linux':
print('PYTORCH_BINARY_BUILD found. Static linking libstdc++ on Linux')
extra_compile_args += ['-static-libstdc++']
extra_link_args += ['-static-libstdc++']
cwd = os.path.dirname(os.path.abspath(__file__))
lib_path = os.path.join(cwd, "torch", "lib")
tmp_install_path = lib_path + "/tmp_install"
include_dirs += [
cwd,
os.path.join(cwd, "torch", "csrc"),
tmp_install_path + "/include",
tmp_install_path + "/include/TH",
tmp_install_path + "/include/THPP",
tmp_install_path + "/include/THNN",
]
library_dirs.append(lib_path)
# we specify exact lib names to avoid conflict with lua-torch installs
TH_LIB = os.path.join(lib_path, 'libTH.so.1')
THS_LIB = os.path.join(lib_path, 'libTHS.so.1')
THC_LIB = os.path.join(lib_path, 'libTHC.so.1')
THCS_LIB = os.path.join(lib_path, 'libTHCS.so.1')
THNN_LIB = os.path.join(lib_path, 'libTHNN.so.1')
THCUNN_LIB = os.path.join(lib_path, 'libTHCUNN.so.1')
THPP_LIB = os.path.join(lib_path, 'libTHPP.so.1')
THD_LIB = os.path.join(lib_path, 'libTHD.so.1')
NCCL_LIB = os.path.join(lib_path, 'libnccl.so.1')
if platform.system() == 'Darwin':
TH_LIB = os.path.join(lib_path, 'libTH.1.dylib')
THS_LIB = os.path.join(lib_path, 'libTHS.1.dylib')
THC_LIB = os.path.join(lib_path, 'libTHC.1.dylib')
THCS_LIB = os.path.join(lib_path, 'libTHCS.1.dylib')
THNN_LIB = os.path.join(lib_path, 'libTHNN.1.dylib')
THCUNN_LIB = os.path.join(lib_path, 'libTHCUNN.1.dylib')
THPP_LIB = os.path.join(lib_path, 'libTHPP.1.dylib')
THD_LIB = os.path.join(lib_path, 'libTHD.1.dylib')
NCCL_LIB = os.path.join(lib_path, 'libnccl.1.dylib')
if WITH_NCCL and subprocess.call('ldconfig -p | grep libnccl >/dev/null', shell=True) == 0:
SYSTEM_NCCL = True
main_compile_args = ['-D_THP_CORE']
main_libraries = ['shm']
main_link_args = [TH_LIB, THS_LIB, THPP_LIB, THNN_LIB]
main_sources = [
"torch/csrc/PtrWrapper.cpp",
"torch/csrc/Module.cpp",
"torch/csrc/Generator.cpp",
"torch/csrc/Size.cpp",
"torch/csrc/Exceptions.cpp",
"torch/csrc/Storage.cpp",
"torch/csrc/DynamicTypes.cpp",
"torch/csrc/byte_order.cpp",
"torch/csrc/utils.cpp",
"torch/csrc/utils/object_ptr.cpp",
"torch/csrc/utils/tuple_parser.cpp",
"torch/csrc/allocators.cpp",
"torch/csrc/serialization.cpp",
"torch/csrc/autograd/init.cpp",
"torch/csrc/autograd/engine.cpp",
"torch/csrc/autograd/function.cpp",
"torch/csrc/autograd/variable.cpp",
"torch/csrc/autograd/input_buffer.cpp",
"torch/csrc/autograd/python_function.cpp",
"torch/csrc/autograd/python_cpp_function.cpp",
"torch/csrc/autograd/python_variable.cpp",
"torch/csrc/autograd/python_engine.cpp",
"torch/csrc/autograd/python_hook.cpp",
"torch/csrc/autograd/functions/batch_normalization.cpp",
"torch/csrc/autograd/functions/convolution.cpp",
"torch/csrc/autograd/functions/basic_ops.cpp",
"torch/csrc/autograd/functions/tensor.cpp",
"torch/csrc/autograd/functions/accumulate_grad.cpp",
"torch/csrc/autograd/functions/utils.cpp",
"torch/csrc/autograd/functions/init.cpp",
"torch/csrc/nn/THNN_generic.cpp",
]
main_sources += split_types("torch/csrc/Tensor.cpp")
try:
import numpy as np
include_dirs += [np.get_include()]
extra_compile_args += ['-DWITH_NUMPY']
WITH_NUMPY = True
except ImportError:
WITH_NUMPY = False
if WITH_DISTRIBUTED:
extra_compile_args += ['-DWITH_DISTRIBUTED']
main_sources += [
"torch/csrc/distributed/Module.cpp",
"torch/csrc/distributed/utils.cpp",
]
if WITH_DISTRIBUTED_MW:
main_sources += [
"torch/csrc/distributed/Tensor.cpp",
"torch/csrc/distributed/Storage.cpp",
]
include_dirs += [tmp_install_path + "/include/THD"]
main_link_args += [THD_LIB]
if WITH_CUDA:
cuda_lib_dirs = ['lib64', 'lib']
cuda_include_path = os.path.join(CUDA_HOME, 'include')
for lib_dir in cuda_lib_dirs:
cuda_lib_path = os.path.join(CUDA_HOME, lib_dir)
if os.path.exists(cuda_lib_path):
break
include_dirs.append(cuda_include_path)
include_dirs.append(tmp_install_path + "/include/THCUNN")
library_dirs.append(cuda_lib_path)
extra_link_args.append('-Wl,-rpath,' + cuda_lib_path)
extra_compile_args += ['-DWITH_CUDA']
extra_compile_args += ['-DCUDA_LIB_PATH=' + cuda_lib_path]
main_libraries += ['cudart']
main_link_args += [THC_LIB, THCS_LIB, THCUNN_LIB]
main_sources += [
"torch/csrc/cuda/Module.cpp",
"torch/csrc/cuda/Storage.cpp",
"torch/csrc/cuda/Stream.cpp",
"torch/csrc/cuda/AutoGPU.cpp",
"torch/csrc/cuda/utils.cpp",
"torch/csrc/cuda/serialization.cpp",
]
main_sources += split_types("torch/csrc/cuda/Tensor.cpp")
if WITH_NCCL:
if SYSTEM_NCCL:
main_libraries += ['nccl']
else:
main_link_args += [NCCL_LIB]
extra_compile_args += ['-DWITH_NCCL']
if WITH_CUDNN:
main_libraries += ['cudnn']
include_dirs.append(CUDNN_INCLUDE_DIR)
library_dirs.append(CUDNN_LIB_DIR)
main_sources += [
"torch/csrc/cudnn/BatchNorm.cpp",
"torch/csrc/cudnn/Conv.cpp",
"torch/csrc/cudnn/cuDNN.cpp",
"torch/csrc/cudnn/Types.cpp",
"torch/csrc/cudnn/Handles.cpp",
]
extra_compile_args += ['-DWITH_CUDNN']
if DEBUG:
extra_compile_args += ['-O0', '-g']
extra_link_args += ['-O0', '-g']
def make_relative_rpath(path):
if platform.system() == 'Darwin':
return '-Wl,-rpath,@loader_path/' + path
else:
return '-Wl,-rpath,$ORIGIN/' + path
################################################################################
# Declare extensions and package
################################################################################
extensions = []
packages = find_packages(exclude=('tools.*',))
C = Extension("torch._C",
libraries=main_libraries,
sources=main_sources,
language='c++',
extra_compile_args=main_compile_args + extra_compile_args,
include_dirs=include_dirs,
library_dirs=library_dirs,
extra_link_args=extra_link_args + main_link_args + [make_relative_rpath('lib')],
)
extensions.append(C)
DL = Extension("torch._dl",
sources=["torch/csrc/dl.c"],
language='c',
)
extensions.append(DL)
THNN = Extension("torch._thnn._THNN",
sources=['torch/csrc/nn/THNN.cpp'],
language='c++',
extra_compile_args=extra_compile_args,
include_dirs=include_dirs,
extra_link_args=extra_link_args + [
TH_LIB,
THNN_LIB,
make_relative_rpath('../lib'),
]
)
extensions.append(THNN)
if WITH_CUDA:
THCUNN = Extension("torch._thnn._THCUNN",
sources=['torch/csrc/nn/THCUNN.cpp'],
language='c++',
extra_compile_args=extra_compile_args,
include_dirs=include_dirs,
extra_link_args=extra_link_args + [
TH_LIB,
THC_LIB,
THCUNN_LIB,
make_relative_rpath('../lib'),
]
)
extensions.append(THCUNN)
version = '0.1.12'
if os.getenv('PYTORCH_BUILD_VERSION'):
assert os.getenv('PYTORCH_BUILD_NUMBER') is not None
version = os.getenv('PYTORCH_BUILD_VERSION') \
+ '_' + os.getenv('PYTORCH_BUILD_NUMBER')
else:
try:
sha = subprocess.check_output(['git', 'rev-parse', 'HEAD'], cwd=cwd).decode('ascii').strip()
version += '+' + sha[:7]
except subprocess.CalledProcessError:
pass
setup(name="torch", version=version,
description="Tensors and Dynamic neural networks in Python with strong GPU acceleration",
ext_modules=extensions,
cmdclass={
'build': build,
'build_py': build_py,
'build_ext': build_ext,
'build_deps': build_deps,
'build_module': build_module,
'develop': develop,
'install': install,
'clean': clean,
},
packages=packages,
package_data={'torch': [
'lib/*.so*', 'lib/*.dylib*',
'lib/torch_shm_manager',
'lib/*.h',
'lib/include/TH/*.h', 'lib/include/TH/generic/*.h',
'lib/include/THC/*.h', 'lib/include/THC/generic/*.h']},
install_requires=['pyyaml'],
)