-
Notifications
You must be signed in to change notification settings - Fork 64
/
authorshipGNN.py
974 lines (810 loc) · 38.1 KB
/
authorshipGNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
# 2019/04/08~
# Fernando Gama, [email protected]
# Luana Ruiz, [email protected]
# Test the authorship attribution dataset. The dataset consists on word
# adjacency networks (graph support) and word frequency count of short texts
# (graph signal) for a pool of authors of the 19th century. The word adjacency
# networks are graphs whose nodes are function words and whose edges are
# measures of co-occurrence between these words. These graphs are different
# for each author, but it takes long texts to produce them. In this problem,
# we will use WANs already created, and try to attribute authorship of short
# texts; we count the number of function words present in each short text,
# assign them to the corresponding nodes of the WAN (i.e. graph signals), and
# use those to classify texts. The classification is binary: each texts either
# belongs to the author whose WAN we are using or does not.
# Outputs:
# - Text file with all the hyperparameters selected for the run and the
# corresponding results (hyperparameters.txt)
# - Pickle file with the random seeds of both torch and numpy for accurate
# reproduction of results (randomSeedUsed.pkl)
# - The parameters of the trained models, for both the Best and the Last
# instance of each model (savedModels/)
# - The figures of loss and evaluation through the training iterations for
# each model (figs/ and trainVars/)
# - If selected, logs in tensorboardX certain useful training variables
#%%##################################################################
# #
# IMPORTING #
# #
#####################################################################
#\\\ Standard libraries:
import os
import numpy as np
import matplotlib
matplotlib.rcParams['text.usetex'] = True
matplotlib.rcParams['font.family'] = 'serif'
matplotlib.rcParams['text.latex.preamble']=[r'\usepackage{amsmath}']
import matplotlib.pyplot as plt
import pickle
import datetime
from copy import deepcopy
import torch; torch.set_default_dtype(torch.float64)
import torch.nn as nn
import torch.optim as optim
#\\\ Own libraries:
import alegnn.utils.graphTools as graphTools
import alegnn.utils.dataTools
import alegnn.utils.graphML as gml
import alegnn.modules.architectures as archit
import alegnn.modules.model as model
import alegnn.modules.training as training
import alegnn.modules.evaluation as evaluation
import alegnn.modules.loss as loss
#\\\ Separate functions:
from alegnn.utils.miscTools import writeVarValues
from alegnn.utils.miscTools import saveSeed
# Start measuring time
startRunTime = datetime.datetime.now()
#%%##################################################################
# #
# SETTING PARAMETERS #
# #
#####################################################################
authorName = 'austen'
# jacob 'abbott', robert louis 'stevenson', louisa may 'alcott',
# horatio 'alger', james 'allen', jane 'austen',
# emily 'bronte', james 'cooper', charles 'dickens',
# hamlin 'garland', nathaniel 'hawthorne', henry 'james',
# herman 'melville', 'page', henry 'thoreau',
# mark 'twain', arthur conan 'doyle', washington 'irving',
# edgar allan 'poe', sarah orne 'jewett', edith 'wharton'
thisFilename = 'authorshipGNN' # This is the general name of all related files
saveDirRoot = 'experiments' # In this case, relative location
saveDir = os.path.join(saveDirRoot, thisFilename + '-' + authorName)
# Dir where to save all the results from each run
dataPath = os.path.join('datasets','authorshipData','authorshipData.mat')
#\\\ Create .txt to store the values of the setting parameters for easier
# reference when running multiple experiments
today = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
# Append date and time of the run to the directory, to avoid several runs of
# overwritting each other.
saveDir = saveDir + '-' + today
# Create directory
if not os.path.exists(saveDir):
os.makedirs(saveDir)
# Create the file where all the (hyper)parameters and results will be saved.
varsFile = os.path.join(saveDir,'hyperparameters.txt')
with open(varsFile, 'w+') as file:
file.write('%s\n\n' % datetime.datetime.now().strftime("%Y/%m/%d %H:%M:%S"))
#\\\ Save seeds for reproducibility
# PyTorch seeds
torchState = torch.get_rng_state()
torchSeed = torch.initial_seed()
# Numpy seeds
numpyState = np.random.RandomState().get_state()
# Collect all random states
randomStates = []
randomStates.append({})
randomStates[0]['module'] = 'numpy'
randomStates[0]['state'] = numpyState
randomStates.append({})
randomStates[1]['module'] = 'torch'
randomStates[1]['state'] = torchState
randomStates[1]['seed'] = torchSeed
# This list and dictionary follows the format to then be loaded, if needed,
# by calling the loadSeed function in Utils.miscTools
saveSeed(randomStates, saveDir)
########
# DATA #
########
useGPU = True # If true, and GPU is available, use it.
nClasses = 2 # Either authorName or not
ratioTrain = 0.95 # Ratio of training samples
ratioValid = 0.08 # Ratio of validation samples (out of the total training
# samples)
# Final split is:
# nValidation = round(ratioValid * ratioTrain * nTotal)
# nTrain = round((1 - ratioValid) * ratioTrain * nTotal)
# nTest = nTotal - nTrain - nValidation
nDataSplits = 10 # Number of data realizations
# Obs.: The built graph depends on the split between training, validation and
# testing. Therefore, we will run several of these splits and average across
# them, to obtain some result that is more robust to this split.
# Every training excerpt has a WAN associated to it. We combine all these WANs
# into a single graph to use as the supporting graph for all samples. This
# combination happens under some extra options:
graphNormalizationType = 'rows' # or 'cols' - Makes all rows add up to 1.
keepIsolatedNodes = False # If True keeps isolated nodes
forceUndirected = True # If True forces the graph to be undirected (symmetrizes)
forceConnected = True # If True removes nodes (from lowest to highest degree)
# until the resulting graph is connected.
#\\\ Save values:
writeVarValues(varsFile,
{'authorName': authorName,
'nClasses': nClasses,
'ratioTrain': ratioTrain,
'ratioValid': ratioValid,
'nDataSplits': nDataSplits,
'graphNormalizationType': graphNormalizationType,
'keepIsolatedNodes': keepIsolatedNodes,
'forceUndirected': forceUndirected,
'forceConnected': forceConnected,
'useGPU': useGPU})
############
# TRAINING #
############
#\\\ Individual model training options
optimAlg = 'ADAM' # Options: 'SGD', 'ADAM', 'RMSprop'
learningRate = 0.005 # In all options
beta1 = 0.9 # beta1 if 'ADAM', alpha if 'RMSprop'
beta2 = 0.999 # ADAM option only
#\\\ Loss function choice
lossFunction = nn.CrossEntropyLoss # This applies a softmax before feeding
# it into the NLL, so we don't have to apply the softmax ourselves.
#\\\ Overall training options
nEpochs = 25 # Number of epochs
batchSize = 20 # Batch size
doLearningRateDecay = False # Learning rate decay
learningRateDecayRate = 0.9 # Rate
learningRateDecayPeriod = 1 # How many epochs after which update the lr
validationInterval = 5 # How many training steps to do the validation
#\\\ Save values
writeVarValues(varsFile,
{'optimAlg': optimAlg,
'learningRate': learningRate,
'beta1': beta1,
'lossFunction': lossFunction,
'nEpochs': nEpochs,
'batchSize': batchSize,
'doLearningRateDecay': doLearningRateDecay,
'learningRateDecayRate': learningRateDecayRate,
'learningRateDecayPeriod': learningRateDecayPeriod,
'validationInterval': validationInterval})
#################
# ARCHITECTURES #
#################
# Here, there will be three one-layer architectures
doLocalMax = True
doLocalMed = True
doPointwse = True
# In this section, we determine the (hyper)parameters of models that we are
# going to train. This only sets the parameters. The architectures need to be
# created later below. Do not forget to add the name of the architecture
# to modelList.
# If the model dictionary is called 'model' + name, then it can be
# picked up immediately later on, and there's no need to recode anything after
# the section 'Setup' (except for setting the number of nodes in the 'N'
# variable after it has been coded).
# The name of the keys in the model dictionary have to be the same
# as the names of the variables in the architecture call, because they will
# be called by unpacking the dictionary.
modelList = []
#\\\\\\\\\\\\\\\\\\\\\
#\\\ SELECTION GNN \\\
#\\\\\\\\\\\\\\\\\\\\\
# Hyperparameters to be shared by all architectures
modelActvFn = {}
modelActvFn['name'] = 'ActvFn' # To be modified later on depending on the
# specific ordering selected
modelActvFn['device'] = 'cuda:0' if (useGPU and torch.cuda.is_available()) \
else 'cpu'
#\\\ ARCHITECTURE
# Select architectural nn.Module to use
modelActvFn['archit'] = archit.LocalActivationGNN
# Graph convolutional layers
modelActvFn['dimNodeSignals'] = [1, 32] # Number of features per layer
modelActvFn['nFilterTaps'] = [5] # Number of filter taps
modelActvFn['bias'] = True # Include bias
# Nonlinearity
modelActvFn['nonlinearity'] = gml.NoActivation
modelActvFn['kHopActivation'] = [2]
# Pooling
modelActvFn['nSelectedNodes'] = None # To be determined later
modelActvFn['poolingFunction'] = gml.NoPool # Summarizing function
modelActvFn['poolingSize'] = [1] # Summarizing neighborhoods
# Readout layer
modelActvFn['dimLayersMLP'] = [nClasses]
# Graph Structure
modelActvFn['GSO'] = None # To be determined later on, based on data
modelActvFn['order'] = None # Not used because there is no pooling
#\\\ TRAINER
modelActvFn['trainer'] = training.Trainer
#\\\ EVALUATOR
modelActvFn['evaluator'] = evaluation.evaluate
#\\\\\\\\\\\\
#\\\ MODEL 1: Max Local Activation
#\\\\\\\\\\\\
if doLocalMax:
#\\\ Basic parameters for all the Aggregation GNN architectures
modelActvFnMax = deepcopy(modelActvFn)
modelActvFnMax['name'] += 'Max'
# Nonlinearity
modelActvFnMax['nonlinearity'] = gml.MaxLocalActivation
#\\\ Save Values:
writeVarValues(varsFile, modelActvFnMax)
modelList += [modelActvFnMax['name']]
#\\\\\\\\\\\\
#\\\ MODEL 2: Median Local Activation
#\\\\\\\\\\\\
if doLocalMed:
#\\\ Basic parameters for all the Aggregation GNN architectures
modelActvFnMed = deepcopy(modelActvFn)
modelActvFnMed['name'] += 'Med'
# Nonlinearity
modelActvFnMed['nonlinearity'] = gml.MedianLocalActivation
#\\\ Save Values:
writeVarValues(varsFile, modelActvFnMed)
modelList += [modelActvFnMed['name']]
#\\\\\\\\\\\\
#\\\ MODEL 3: ReLU nonlinearity
#\\\\\\\\\\\\
if doPointwse:
#\\\ Basic parameters for all the Aggregation GNN architectures
modelActvFnPnt = deepcopy(modelActvFn)
modelActvFnPnt['name'] += 'Pnt'
# Change the architecture
modelActvFnPnt['archit'] = archit.SelectionGNN
# Nonlinearity
modelActvFnPnt['nonlinearity'] = nn.ReLU
# Get rid of the parameter kHopActivation that we do not need anymore
modelActvFnPnt.pop('kHopActivation')
#\\\ Save Values:
writeVarValues(varsFile, modelActvFnPnt)
modelList += [modelActvFnPnt['name']]
###########
# LOGGING #
###########
# Options:
doPrint = True # Decide whether to print stuff while running
doLogging = False # Log into tensorboard
doSaveVars = True # Save (pickle) useful variables
doFigs = True # Plot some figures (this only works if doSaveVars is True)
# Parameters:
printInterval = 5 # After how many training steps, print the partial results
# 0 means to never print partial results while training
xAxisMultiplierTrain = 10 # How many training steps in between those shown in
# the plot, i.e., one training step every xAxisMultiplierTrain is shown.
xAxisMultiplierValid = 2 # How many validation steps in between those shown,
# same as above.
figSize = 5 # Overall size of the figure that contains the plot
lineWidth = 2 # Width of the plot lines
markerShape = 'o' # Shape of the markers
markerSize = 3 # Size of the markers
#\\\ Save values:
writeVarValues(varsFile,
{'doPrint': doPrint,
'doLogging': doLogging,
'doSaveVars': doSaveVars,
'doFigs': doFigs,
'saveDir': saveDir,
'printInterval': printInterval,
'figSize': figSize,
'lineWidth': lineWidth,
'markerShape': markerShape,
'markerSize': markerSize})
#%%##################################################################
# #
# SETUP #
# #
#####################################################################
#\\\ Determine processing unit:
if useGPU and torch.cuda.is_available():
torch.cuda.empty_cache()
#\\\ Notify of processing units
if doPrint:
print("Selected devices:")
for thisModel in modelList:
modelDict = eval('model' + thisModel)
print("\t%s: %s" % (thisModel, modelDict['device']))
#\\\ Logging options
if doLogging:
# If logging is on, load the tensorboard visualizer and initialize it
from alegnn.utils.visualTools import Visualizer
logsTB = os.path.join(saveDir, 'logsTB')
logger = Visualizer(logsTB, name='visualResults')
#\\\ Save variables during evaluation.
# We will save all the evaluations obtained for each of the trained models.
# It basically is a dictionary, containing a list. The key of the
# dictionary determines the model, then the first list index determines
# which split realization. Then, this will be converted to numpy to compute
# mean and standard deviation (across the split dimension).
costBest = {} # Cost for the best model (Evaluation cost: Error rate)
costLast = {} # Cost for the last model
for thisModel in modelList: # Create an element for each split realization,
costBest[thisModel] = [None] * nDataSplits
costLast[thisModel] = [None] * nDataSplits
if doFigs:
#\\\ SAVE SPACE:
# Create the variables to save all the realizations. This is, again, a
# dictionary, where each key represents a model, and each model is a list
# for each data split.
# Each data split, in this case, is not a scalar, but a vector of
# length the number of training steps (or of validation steps)
lossTrain = {}
costTrain = {}
lossValid = {}
costValid = {}
# Initialize the splits dimension
for thisModel in modelList:
lossTrain[thisModel] = [None] * nDataSplits
costTrain[thisModel] = [None] * nDataSplits
lossValid[thisModel] = [None] * nDataSplits
costValid[thisModel] = [None] * nDataSplits
####################
# TRAINING OPTIONS #
####################
# Training phase. It has a lot of options that are input through a
# dictionary of arguments.
# The value of these options was decided above with the rest of the parameters.
# This just creates a dictionary necessary to pass to the train function.
trainingOptions = {}
if doLogging:
trainingOptions['logger'] = logger
if doSaveVars:
trainingOptions['saveDir'] = saveDir
if doPrint:
trainingOptions['printInterval'] = printInterval
if doLearningRateDecay:
trainingOptions['learningRateDecayRate'] = learningRateDecayRate
trainingOptions['learningRateDecayPeriod'] = learningRateDecayPeriod
trainingOptions['validationInterval'] = validationInterval
# And in case each model has specific training options, then we create a
# separate dictionary per model.
trainingOptsPerModel= {}
#%%##################################################################
# #
# DATA SPLIT REALIZATION #
# #
#####################################################################
# Start generating a new data split for each of the number of data splits that
# we previously specified
for split in range(nDataSplits):
#%%##################################################################
# #
# DATA HANDLING #
# #
#####################################################################
############
# DATASETS #
############
if doPrint:
print("\nLoading data", end = '')
if nDataSplits > 1:
print(" for split %d" % (split+1), end = '')
print("...", end = ' ', flush = True)
# Load the data, which will give a specific split
data = alegnn.utils.dataTools.Authorship(authorName,
ratioTrain,
ratioValid,
dataPath,
graphNormalizationType,
keepIsolatedNodes,
forceUndirected,
forceConnected)
if doPrint:
print("OK")
#########
# GRAPH #
#########
if doPrint:
print("Setting up the graph...", end = ' ', flush = True)
# Create graph
adjacencyMatrix = data.getGraph()
G = graphTools.Graph('adjacency', adjacencyMatrix.shape[0],
{'adjacencyMatrix': adjacencyMatrix})
G.computeGFT() # Compute the GFT of the stored GSO
# And re-update the number of nodes for changes in the graph (due to
# enforced connectedness, for instance)
nNodes = G.N
# Once data is completely formatted and in appropriate fashion, change its
# type to torch and move it to the appropriate device
data.astype(torch.float64)
# And the corresponding feature dimension that we will need to use
data.expandDims() # Data are just graph signals, but the architectures
# require that the input signals are of the form B x F x N, so we need
# to expand the middle dimensions to convert them from B x N to
# B x 1 x N
if doPrint:
print("OK")
#%%##################################################################
# #
# MODELS INITIALIZATION #
# #
#####################################################################
# This is the dictionary where we store the models (in a model.Model
# class, that is then passed to training).
modelsGNN = {}
# If a new model is to be created, it should be called for here.
if doPrint:
print("Model initialization...", flush = True)
for thisModel in modelList:
# Get the corresponding parameter dictionary
modelDict = deepcopy(eval('model' + thisModel))
# and training options
trainingOptsPerModel[thisModel] = deepcopy(trainingOptions)
# Now, this dictionary has all the hyperparameters that we need to pass
# to the architecture function, but it also has other keys that belong
# to the more general model (like 'name' or 'device'), so we need to
# extract them and save them in seperate variables for future use.
thisName = modelDict.pop('name')
callArchit = modelDict.pop('archit')
thisDevice = modelDict.pop('device')
thisTrainer = modelDict.pop('trainer')
thisEvaluator = modelDict.pop('evaluator')
# If more than one graph or data realization is going to be carried out,
# we are going to store all of those models separately, so that any of
# them can be brought back and studied in detail.
if nDataSplits > 1:
thisName += 'G%02d' % split
if doPrint:
print("\tInitializing %s..." % thisName,
end = ' ',flush = True)
##############
# PARAMETERS #
##############
#\\\ Optimizer options
# (If different from the default ones, change here.)
thisOptimAlg = optimAlg
thisLearningRate = learningRate
thisBeta1 = beta1
thisBeta2 = beta2
#\\\ Ordering
S = G.S.copy()/np.max(np.real(G.E))
# Do not forget to add the GSO to the input parameters of the archit
modelDict['GSO'] = S
# Add the number of nodes for the no-pooling part
modelDict['nSelectedNodes'] = [nNodes]
################
# ARCHITECTURE #
################
thisArchit = callArchit(**modelDict)
#############
# OPTIMIZER #
#############
if thisOptimAlg == 'ADAM':
thisOptim = optim.Adam(thisArchit.parameters(),
lr = learningRate,
betas = (beta1, beta2))
elif thisOptimAlg == 'SGD':
thisOptim = optim.SGD(thisArchit.parameters(),
lr = learningRate)
elif thisOptimAlg == 'RMSprop':
thisOptim = optim.RMSprop(thisArchit.parameters(),
lr = learningRate, alpha = beta1)
########
# LOSS #
########
# Initialize the loss function
thisLossFunction = loss.adaptExtraDimensionLoss(lossFunction)
#########
# MODEL #
#########
# Create the model
modelCreated = model.Model(thisArchit,
thisLossFunction,
thisOptim,
thisTrainer,
thisEvaluator,
thisDevice,
thisName,
saveDir)
# Store it
modelsGNN[thisName] = modelCreated
# Write the main hyperparameters
writeVarValues(varsFile,
{'name': thisName,
'thisOptimizationAlgorithm': thisOptimAlg,
'thisTrainer': thisTrainer,
'thisEvaluator': thisEvaluator,
'thisLearningRate': thisLearningRate,
'thisBeta1': thisBeta1,
'thisBeta2': thisBeta2})
if doPrint:
print("OK")
if doPrint:
print("Model initialization... COMPLETE")
#%%##################################################################
# #
# TRAINING #
# #
#####################################################################
print("")
# We train each model separately
for thisModel in modelsGNN.keys():
if doPrint:
print("Training model %s..." % thisModel)
# Remember that modelsGNN.keys() has the split numbering as well as the
# name, while modelList has only the name. So we need to map the
# specific model for this specific split with the actual model name,
# since there are several variables that are indexed by the model name
# (for instance, the training options, or the dictionaries saving the
# loss values)
for m in modelList:
if m in thisModel:
modelName = m
# Identify the specific split number at training time
if nDataSplits > 1:
trainingOptsPerModel[modelName]['graphNo'] = split
# Train the model
thisTrainVars = modelsGNN[thisModel].train(data,
nEpochs,
batchSize,
**trainingOptsPerModel[modelName])
if doFigs:
# Find which model to save the results (when having multiple
# realizations)
lossTrain[modelName][split] = thisTrainVars['lossTrain']
costTrain[modelName][split] = thisTrainVars['costTrain']
lossValid[modelName][split] = thisTrainVars['lossValid']
costValid[modelName][split] = thisTrainVars['costValid']
# And we also need to save 'nBatches' but is the same for all models, so
if doFigs:
nBatches = thisTrainVars['nBatches']
#%%##################################################################
# #
# EVALUATION #
# #
#####################################################################
# Now that the models have been trained, we evaluate them on the test
# samples.
# We have two versions of each model to evaluate: the one obtained
# at the best result of the validation step, and the last trained model.
if doPrint:
print("\nTotal testing error rate", end = '', flush = True)
if nDataSplits > 1:
print(" (Split %02d)" % split, end = '', flush = True)
print(":", flush = True)
for thisModel in modelsGNN.keys():
# Same as before, separate the model name from the data split
# realization number
for m in modelList:
if m in thisModel:
modelName = m
# Evaluate the model
thisEvalVars = modelsGNN[thisModel].evaluate(data)
# Save the outputs
thisCostBest = thisEvalVars['costBest']
thisCostLast = thisEvalVars['costLast']
# Write values
writeVarValues(varsFile,
{'costBest%s' % thisModel: thisCostBest,
'costLast%s' % thisModel: thisCostLast})
# Now check which is the model being trained
costBest[modelName][split] = thisCostBest
costLast[modelName][split] = thisCostLast
# This is so that we can later compute a total accuracy with
# the corresponding error.
if doPrint:
print("\t%s: %6.2f%% [Best] %6.2f%% [Last]" % (thisModel,
thisCostBest*100,
thisCostLast*100))
############################
# FINAL EVALUATION RESULTS #
############################
# Now that we have computed the accuracy of all runs, we can obtain a final
# result (mean and standard deviation)
meanCostBest = {} # Mean across data splits
meanCostLast = {} # Mean across data splits
stdDevCostBest = {} # Standard deviation across data splits
stdDevCostLast = {} # Standard deviation across data splits
if doPrint:
print("\nFinal evaluations (%02d data splits)" % (nDataSplits))
for thisModel in modelList:
# Convert the lists into a nDataSplits vector
costBest[thisModel] = np.array(costBest[thisModel])
costLast[thisModel] = np.array(costLast[thisModel])
# And now compute the statistics (across graphs)
meanCostBest[thisModel] = np.mean(costBest[thisModel])
meanCostLast[thisModel] = np.mean(costLast[thisModel])
stdDevCostBest[thisModel] = np.std(costBest[thisModel])
stdDevCostLast[thisModel] = np.std(costLast[thisModel])
# And print it:
if doPrint:
print("\t%s: %6.2f%% (+-%6.2f%%) [Best] %6.2f%% (+-%6.2f%%) [Last]" % (
thisModel,
meanCostBest[thisModel] * 100,
stdDevCostBest[thisModel] * 100,
meanCostLast[thisModel] * 100,
stdDevCostLast[thisModel] * 100))
# Save values
writeVarValues(varsFile,
{'meanCostBest%s' % thisModel: meanCostBest[thisModel],
'stdDevCostBest%s' % thisModel: stdDevCostBest[thisModel],
'meanCostLast%s' % thisModel: meanCostLast[thisModel],
'stdDevCostLast%s' % thisModel : stdDevCostLast[thisModel]})
# Save the printed info into the .txt file as well
with open(varsFile, 'a+') as file:
file.write("Final evaluations (%02d data splits)\n" % (nDataSplits))
for thisModel in modelList:
file.write("\t%s: %6.2f%% (+-%6.2f%%) [Best] %6.2f%% (+-%6.2f%%) [Last]\n" % (
thisModel,
meanCostBest[thisModel] * 100,
stdDevCostBest[thisModel] * 100,
meanCostLast[thisModel] * 100,
stdDevCostLast[thisModel] * 100))
file.write('\n')
#%%##################################################################
# #
# PLOT #
# #
#####################################################################
# Finally, we might want to plot several quantities of interest
if doFigs and doSaveVars:
###################
# DATA PROCESSING #
###################
#\\\ FIGURES DIRECTORY:
saveDirFigs = os.path.join(saveDir,'figs')
# If it doesn't exist, create it.
if not os.path.exists(saveDirFigs):
os.makedirs(saveDirFigs)
#\\\ COMPUTE STATISTICS:
# The first thing to do is to transform those into a matrix with all the
# realizations, so create the variables to save that.
meanLossTrain = {}
meanCostTrain = {}
meanLossValid = {}
meanCostValid = {}
stdDevLossTrain = {}
stdDevCostTrain = {}
stdDevLossValid = {}
stdDevCostValid = {}
# Initialize the variables
for thisModel in modelList:
# Transform into np.array
lossTrain[thisModel] = np.array(lossTrain[thisModel])
costTrain[thisModel] = np.array(costTrain[thisModel])
lossValid[thisModel] = np.array(lossValid[thisModel])
costValid[thisModel] = np.array(costValid[thisModel])
# Each of one of these variables should be of shape
# nDataSplits x numberOfTrainingSteps
# And compute the statistics
meanLossTrain[thisModel] = np.mean(lossTrain[thisModel], axis = 0)
meanCostTrain[thisModel] = np.mean(costTrain[thisModel], axis = 0)
meanLossValid[thisModel] = np.mean(lossValid[thisModel], axis = 0)
meanCostValid[thisModel] = np.mean(costValid[thisModel], axis = 0)
stdDevLossTrain[thisModel] = np.std(lossTrain[thisModel], axis = 0)
stdDevCostTrain[thisModel] = np.std(costTrain[thisModel], axis = 0)
stdDevLossValid[thisModel] = np.std(lossValid[thisModel], axis = 0)
stdDevCostValid[thisModel] = np.std(costValid[thisModel], axis = 0)
####################
# SAVE FIGURE DATA #
####################
# And finally, we can plot. But before, let's save the variables mean and
# stdDev so, if we don't like the plot, we can re-open them, and re-plot
# them, a piacere.
# Pickle, first:
varsPickle = {}
varsPickle['nEpochs'] = nEpochs
varsPickle['nBatches'] = nBatches
varsPickle['meanLossTrain'] = meanLossTrain
varsPickle['stdDevLossTrain'] = stdDevLossTrain
varsPickle['meanCostTrain'] = meanCostTrain
varsPickle['stdDevCostTrain'] = stdDevCostTrain
varsPickle['meanLossValid'] = meanLossValid
varsPickle['stdDevLossValid'] = stdDevLossValid
varsPickle['meanCostValid'] = meanCostValid
varsPickle['stdDevCostValid'] = stdDevCostValid
with open(os.path.join(saveDirFigs,'figVars.pkl'), 'wb') as figVarsFile:
pickle.dump(varsPickle, figVarsFile)
########
# PLOT #
########
# Compute the x-axis
xTrain = np.arange(0, nEpochs * nBatches, xAxisMultiplierTrain)
xValid = np.arange(0, nEpochs * nBatches, \
validationInterval*xAxisMultiplierValid)
# If we do not want to plot all the elements (to avoid overcrowded plots)
# we need to recompute the x axis and take those elements corresponding
# to the training steps we want to plot
if xAxisMultiplierTrain > 1:
# Actual selected samples
selectSamplesTrain = xTrain
# Go and fetch tem
for thisModel in modelList:
meanLossTrain[thisModel] = meanLossTrain[thisModel]\
[selectSamplesTrain]
stdDevLossTrain[thisModel] = stdDevLossTrain[thisModel]\
[selectSamplesTrain]
meanCostTrain[thisModel] = meanCostTrain[thisModel]\
[selectSamplesTrain]
stdDevCostTrain[thisModel] = stdDevCostTrain[thisModel]\
[selectSamplesTrain]
# And same for the validation, if necessary.
if xAxisMultiplierValid > 1:
selectSamplesValid = np.arange(0, len(meanLossValid[thisModel]), \
xAxisMultiplierValid)
for thisModel in modelList:
meanLossValid[thisModel] = meanLossValid[thisModel]\
[selectSamplesValid]
stdDevLossValid[thisModel] = stdDevLossValid[thisModel]\
[selectSamplesValid]
meanCostValid[thisModel] = meanCostValid[thisModel]\
[selectSamplesValid]
stdDevCostValid[thisModel] = stdDevCostValid[thisModel]\
[selectSamplesValid]
#\\\ LOSS (Training and validation) for EACH MODEL
for key in meanLossTrain.keys():
lossFig = plt.figure(figsize=(1.61*figSize, 1*figSize))
plt.errorbar(xTrain, meanLossTrain[key], yerr = stdDevLossTrain[key],
color = '#01256E', linewidth = lineWidth,
marker = markerShape, markersize = markerSize)
plt.errorbar(xValid, meanLossValid[key], yerr = stdDevLossValid[key],
color = '#95001A', linewidth = lineWidth,
marker = markerShape, markersize = markerSize)
plt.ylabel(r'Loss')
plt.xlabel(r'Training steps')
plt.legend([r'Training', r'Validation'])
plt.title(r'%s' % key)
lossFig.savefig(os.path.join(saveDirFigs,'loss%s.pdf' % key),
bbox_inches = 'tight')
#\\\ RMSE (Training and validation) for EACH MODEL
for key in meanCostTrain.keys():
costFig = plt.figure(figsize=(1.61*figSize, 1*figSize))
plt.errorbar(xTrain, meanCostTrain[key], yerr = stdDevCostTrain[key],
color = '#01256E', linewidth = lineWidth,
marker = markerShape, markersize = markerSize)
plt.errorbar(xValid, meanCostValid[key], yerr = stdDevCostValid[key],
color = '#95001A', linewidth = lineWidth,
marker = markerShape, markersize = markerSize)
plt.ylabel(r'Error rate')
plt.xlabel(r'Training steps')
plt.legend([r'Training', r'Validation'])
plt.title(r'%s' % key)
costFig.savefig(os.path.join(saveDirFigs,'cost%s.pdf' % key),
bbox_inches = 'tight')
# LOSS (training) for ALL MODELS
allLossTrain = plt.figure(figsize=(1.61*figSize, 1*figSize))
for key in meanLossTrain.keys():
plt.errorbar(xTrain, meanLossTrain[key], yerr = stdDevLossTrain[key],
linewidth = lineWidth,
marker = markerShape, markersize = markerSize)
plt.ylabel(r'Loss')
plt.xlabel(r'Training steps')
plt.legend(list(meanLossTrain.keys()))
allLossTrain.savefig(os.path.join(saveDirFigs,'allLossTrain.pdf'),
bbox_inches = 'tight')
# RMSE (validation) for ALL MODELS
allCostValidFig = plt.figure(figsize=(1.61*figSize, 1*figSize))
for key in meanCostValid.keys():
plt.errorbar(xValid, meanCostValid[key], yerr = stdDevCostValid[key],
linewidth = lineWidth,
marker = markerShape, markersize = markerSize)
plt.ylabel(r'Error rate')
plt.xlabel(r'Training steps')
plt.legend(list(meanCostValid.keys()))
allCostValidFig.savefig(os.path.join(saveDirFigs,'allCostValid.pdf'),
bbox_inches = 'tight')
# Finish measuring time
endRunTime = datetime.datetime.now()
totalRunTime = abs(endRunTime - startRunTime)
totalRunTimeH = int(divmod(totalRunTime.total_seconds(), 3600)[0])
totalRunTimeM, totalRunTimeS = \
divmod(totalRunTime.total_seconds() - totalRunTimeH * 3600., 60)
totalRunTimeM = int(totalRunTimeM)
if doPrint:
print(" ")
print("Simulation started: %s" %startRunTime.strftime("%Y/%m/%d %H:%M:%S"))
print("Simulation ended: %s" % endRunTime.strftime("%Y/%m/%d %H:%M:%S"))
print("Total time: %dh %dm %.2fs" % (totalRunTimeH,
totalRunTimeM,
totalRunTimeS))
# And save this info into the .txt file as well
with open(varsFile, 'a+') as file:
file.write("Simulation started: %s\n" %
startRunTime.strftime("%Y/%m/%d %H:%M:%S"))
file.write("Simulation ended: %s\n" %
endRunTime.strftime("%Y/%m/%d %H:%M:%S"))
file.write("Total time: %dh %dm %.2fs" % (totalRunTimeH,
totalRunTimeM,
totalRunTimeS))