forked from johannesgerer/jburkardt-f
-
Notifications
You must be signed in to change notification settings - Fork 2
/
codepack.html
761 lines (728 loc) · 24.3 KB
/
codepack.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
<html>
<head>
<title>
CODEPACK - Graph Codes
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
CODEPACK <br> Graph Codes
</h1>
<hr>
<p>
<b>CODEPACK</b>
is a FORTRAN90 library which
computes and compares "codes" for graphs, directed graphs, multigraphs,
and other generalizations of an abstract graph.
</p>
<p>
The codes are a form of "signature". Two graphs are
isomorphic (essentially the same object) if and only if their signatures
are equal. The codes are numeric, and hence determining whether
two graphs are isomorphic is reduced to the problem of whether two
sequences of integers are identical.
</p>
<p>
It is important to understand that the kind of problem being
considered here is HARD and EXPENSIVE. The time and space
requirements increase very rapidly as the number of nodes in
the graph increase. Graphs with 10 nodes can be handled, but
graphs with 20 nodes may be difficult, and graphs with 40 or
50 nodes may be impossible to handle. This is partly because
we are looking at permutations of the nodes, and this number grows
as the factorial function.
</p>
<p>
Although graph codes are expensive to compute, it is often not
difficult to detect that two graphs are not isomorphic.
A determination can be made very quickly if the number of nodes,
number of edges, or the degree sequence does not match. These
techniques can often produce a "No" answer quickly. But if two
graphs do happen to be isomorphic, then there is no rapid way
to determine this. The only thing a graph code offers is a
systematic (but slow) way to go about this computation.
</p>
<p>
The kinds of graphs considered here include:
<ul>
<li>
<i>Graphs</i> in which any two nodes may or may not be connected.
</li>
<li>
<i>Digraphs</i> or "directed graphs", in which the edges between
two nodes have a direction.
</li>
<li>
<i>Color graphs</i> in which each node has a color.
</li>
<li>
<i>Multigraphs</i> in which the number of (undirected) edges between
two nodes may be more than 1; this may also be thought of as a
single edge with an integer weight.
</li>
<li>
<i>Weighted graphs</i> in which each (undirected) edge is assigned
a (real number) weight, or distance.
</li>
</ul>
Other kinds of graphs can have various combinations of these properties.
For instance, we are interested in <i>color dimultigraphs</I>.
</p>
<p>
Some of the routine names begin with a prefix that indicates the type
of object it is associated with:
<ul>
<li>
<b>G</b> is a graph;
</li>
<li>
<b>DG</b> is a directed graph (edges have a direction);
</li>
<li>
<b>CG</b> is a color graph (nodes have a color);
</li>
<li>
<b>MG</b> is a multigraph (edges have multiplicity);
</li>
<li>
<b>CDG</b> is a color directed graph (edges have direction,
nodes have a color);
</li>
<li>
<b>DMG</b> is a dimultigraph (edges have direction and multiplicity);
</li>
<li>
<b>CDMG</b> is a color dimultigraph (edges have direction and
multiplicity, nodes have color);
</li>
<li>
<b>WG</b> is a weighted graph;
</li>
</ul>
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/cities/cities.html">
CITIES</a>,
a FORTRAN90 library which
handles various problems associated with a set of "cities" on a map.
</p>
<p>
<a href = "../../datasets/cities/cities.html">
CITIES</a>,
a dataset directory which
contains a number of city distance datasets.
</p>
<p>
<a href = "../../f_src/grafpack/grafpack.html">
GRAFPACK</a>,
a FORTRAN90 library which
performs various calculations involving mathematical
graphs. This library originally included the routines in
<b>CODEPACK</b>, but as that package grew too large, these
routines were extracted.
</p>
<p>
<a href = "../../data/graph_representation/graph_representation.html">
GRAPH_REPRESENTATION</a>,
a data directory which
contains examples of ways of representing abstract
mathematical graphs
</p>
<p>
<a href = "../../f_src/subset/subset.html">
SUBSET</a>,
a FORTRAN90 library which
handles combinatorial calculations.
</p>
<p>
<a href = "../../f_src/table_graph_code/table_graph_code.html">
TABLE_GRAPH_CODE</a>,
a FORTRAN90 program which
reads a TABLE file describing a graph, and computes its graph code.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
A discussion of graph codes is available in
<a href = "http://www.sc.fsu.edu/~burkardt/html/graph_codes.html">
http://www.sc.fsu.edu/~burkardt/html/graph_codes.html </a>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "codepack.f90">codepack.f90</a>, the source code;
</li>
<li>
<a href = "codepack.sh">codepack.sh</a>,
commands to compile the source code;
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "codepack_prb.f90">codepack_prb.f90</a>, the calling
program;
</li>
<li>
<a href = "codepack_prb.sh">codepack_prb.sh</a>,
commands to compile, link and run the calling program;
</li>
<li>
<a href = "codepack_prb_output.txt">codepack_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>CDG_CODE_BACK</b> computes a color digraph code via backtracking.
</li>
<li>
<b>CDG_CODE_BRUTE</b> computes the color digraph code via brute force.
</li>
<li>
<b>CDG_CODE_CAND</b> finds candidates for a maximal color digraph code ordering.
</li>
<li>
<b>CDG_CODE_COMPARE</b> compares two (partial) color graph codes.
</li>
<li>
<b>CDG_CODE_PRINT</b> prints a color digraph code.
</li>
<li>
<b>CDG_COLOR_COUNT</b> counts the number of colors in a color digraph.
</li>
<li>
<b>CDG_COLOR_SEQUENCE</b> computes the color sequence of a color digraph.
</li>
<li>
<b>CDG_COMPARE</b> determines if color digraphs G1 and G2 are isomorphic.
</li>
<li>
<b>CDG_DEGREE</b> computes the indegree and outdegree of each node.
</li>
<li>
<b>CDG_DEGREE_SEQ</b> computes the degree sequence of a color digraph.
</li>
<li>
<b>CDG_EDGE_COUNT</b> counts the number of edges in a color digraph.
</li>
<li>
<b>CDG_EXAMPLE_CUBE</b> sets up the cube color digraph.
</li>
<li>
<b>CDG_EXAMPLE_OCTO</b> sets up an 8 node example color digraph.
</li>
<li>
<b>CDG_ORDER_CODE</b> returns the color digraph code for a specific node ordering.
</li>
<li>
<b>CDG_PRINT</b> prints out the adjacency matrix of a color digraph.
</li>
<li>
<b>CDG_RANDOM</b> generates a random color graph.
</li>
<li>
<b>CDMG_ADJ_MAX_MAX</b> computes the adjacency maximum maximum of a color dimultigraph.
</li>
<li>
<b>CDMG_ADJ_MAX_SEQ</b> computes the adjacency maximum sequence of a color dimultigraph.
</li>
<li>
<b>CDMG_ADJ_SEQ_U</b> computes the unweighted adjacency sequence of a color dimultigraph.
</li>
<li>
<b>CDMG_ADJ_SEQ_W</b> computes the weighted adjacency sequence of a color dimultigraph.
</li>
<li>
<b>CDMG_CODE_BACK</b> computes a color dimultigraph code via backtracking.
</li>
<li>
<b>CDMG_CODE_BRUTE</b> computes a color dimultigraph code via brute force.
</li>
<li>
<b>CDMG_CODE_CAND</b> finds candidates for a maximal color dimultigraph code ordering.
</li>
<li>
<b>CDMG_CODE_COMPARE</b> compares two (partial) color dimultigraph codes.
</li>
<li>
<b>CDMG_CODE_PRINT</b> prints out a color dimultigraph code.
</li>
<li>
<b>CDMG_COLOR_COUNT</b> counts the number of colors in a color dimultigraph.
</li>
<li>
<b>CDMG_COLOR_SEQUENCE</b> computes the color sequence of a color dimultigraph.
</li>
<li>
<b>CDMG_COMPARE</b> determines if color dimultigraphs G1 and G2 are isomorphic.
</li>
<li>
<b>CDMG_DEGREE_SEQ_U:</b> unweighted directed degree sequence of color dimultigraph.
</li>
<li>
<b>CDMG_DEGREE_SEQ_W:</b> weighted directed degree sequence of a color dimultigraph.
</li>
<li>
<b>CDMG_DEGREE_U</b> computes the unweighted degrees of a color dimultigraph.
</li>
<li>
<b>CDMG_DEGREE_W</b> computes the weighted degrees of a color dimultigraph.
</li>
<li>
<b>CDMG_EDGE_COUNT</b> counts the number of edges in a color dimultigraph.
</li>
<li>
<b>CDMG_EXAMPLE_OCTO</b> sets up an 8 node example color dimultigraph.
</li>
<li>
<b>CDMG_ORDER_CODE</b> returns the color dimultigraph code for a specific node ordering.
</li>
<li>
<b>CDMG_PRINT</b> prints out an adjacency matrix for a color dimultigraph.
</li>
<li>
<b>CDMG_RANDOM</b> generates a random color dimultigraph.
</li>
<li>
<b>CG_CODE_BACK</b> computes a color graph code via backtracking.
</li>
<li>
<b>CG_CODE_BRUTE</b> computes the color graph code via brute force.
</li>
<li>
<b>CG_CODE_CAND</b> finds candidates for a maximal color graph code ordering.
</li>
<li>
<b>CG_CODE_COMPARE</b> compares two (partial) color graph codes.
</li>
<li>
<b>CG_CODE_PRINT</b> prints a color graph code.
</li>
<li>
<b>CG_COLOR_COUNT</b> counts the number of colors in a color graph.
</li>
<li>
<b>CG_COLOR_SEQUENCE</b> computes the color sequence of a color graph.
</li>
<li>
<b>CG_COMPARE</b> determines if color graphs G1 and G2 are isomorphic.
</li>
<li>
<b>CG_CONNECT_RANDOM</b> generates a random connected color graph.
</li>
<li>
<b>CG_DEGREE</b> computes the degree of each node.
</li>
<li>
<b>CG_DEGREE_SEQ</b> computes the degree sequence of a color graph.
</li>
<li>
<b>CG_EDGE_COUNT</b> counts the number of edges in a color graph.
</li>
<li>
<b>CG_EXAMPLE_BUSH</b> sets up the bush color graph.
</li>
<li>
<b>CG_EXAMPLE_CUBE</b> sets up the cube color graph.
</li>
<li>
<b>CG_EXAMPLE_OCTO</b> sets up an 8 node example color graph.
</li>
<li>
<b>CG_EXAMPLE_TWIG</b> sets up the twig color graph.
</li>
<li>
<b>CG_ORDER_CODE</b> returns the color graph code for a specific node ordering.
</li>
<li>
<b>CG_PRINT</b> prints out the adjacency matrix of a color graph.
</li>
<li>
<b>CG_RANDOM</b> generates a random color graph.
</li>
<li>
<b>DG_CODE_BACK</b> computes a digraph code via backtracking.
</li>
<li>
<b>DG_CODE_BRUTE</b> computes a digraph code via brute force.
</li>
<li>
<b>DG_CODE_CAND</b> finds candidates for a maximal digraph code ordering.
</li>
<li>
<b>DG_CODE_COMPARE</b> compares two partial digraph codes.
</li>
<li>
<b>DG_CODE_PRINT</b> prints out a digraph code.
</li>
<li>
<b>DG_COMPARE</b> determines if digraphs G1 and G2 are isomorphic.
</li>
<li>
<b>DG_DEGREE</b> computes the indegree and outdegree of each node.
</li>
<li>
<b>DG_DEGREE_MAX</b> computes the maximum degrees of a digraph.
</li>
<li>
<b>DG_DEGREE_SEQ</b> computes the directed degree sequence.
</li>
<li>
<b>DG_EDGE_COUNT</b> counts the number of edges in a digraph.
</li>
<li>
<b>DG_EXAMPLE_CYCLER</b> sets up the adjacency information for the cycler digraph.
</li>
<li>
<b>DG_EXAMPLE_OCTO</b> sets up an 8 node example digraph.
</li>
<li>
<b>DG_EXAMPLE_SIXTY</b> sets up the adjacency information for the sixty digraph.
</li>
<li>
<b>DG_ORDER_CODE</b> returns the digraph code for a specific node ordering.
</li>
<li>
<b>DG_RANDOM</b> generates a random digraph.
</li>
<li>
<b>DMG_ADJ_MAX_MAX</b> computes the adjacency maximum maximum of a dimultigraph.
</li>
<li>
<b>DMG_ADJ_MAX_SEQ</b> computes the adjacency maximum sequence of a dimultigraph.
</li>
<li>
<b>DMG_ADJ_SEQ_U</b> computes the unweighted adjacency sequence of a dimultigraph.
</li>
<li>
<b>DMG_ADJ_SEQ_W</b> computes the weighted adjacency sequence of a dimultigraph.
</li>
<li>
<b>DMG_CODE_BACK</b> computes a dimultigraph code via backtracking.
</li>
<li>
<b>DMG_CODE_BRUTE</b> computes a dimultigraph code via brute force.
</li>
<li>
<b>DMG_CODE_CAND</b> finds candidates for a maximal dimultigraph code ordering.
</li>
<li>
<b>DMG_CODE_COMPARE</b> compares two partial dimultigraph codes.
</li>
<li>
<b>DMG_CODE_PRINT</b> prints out a dimultigraph code.
</li>
<li>
<b>DMG_COMPARE</b> determines if dimultigraphs G1 and G2 are isomorphic.
</li>
<li>
<b>DMG_DEGREE_SEQ_U:</b> the unweighted directed degree sequence of a dimultigraph.
</li>
<li>
<b>DMG_DEGREE_SEQ_W:</b> weighted directed degree sequence of a dimultigraph.
</li>
<li>
<b>DMG_DEGREE_U</b> computes the unweighted degrees of a dimultigraph.
</li>
<li>
<b>DMG_DEGREE_W</b> computes the weighted degrees of a dimultigraph.
</li>
<li>
<b>DMG_EDGE_COUNT</b> counts the number of edges in a dimultigraph.
</li>
<li>
<b>DMG_EXAMPLE_OCTO</b> sets up an 8 node example dimultigraph.
</li>
<li>
<b>DMG_ORDER_CODE</b> returns the dimultigraph code for a specific node ordering.
</li>
<li>
<b>DMG_PRINT</b> prints out an adjacency matrix for a dimultigraph.
</li>
<li>
<b>DMG_RANDOM</b> generates a random dimultigraph on NNODE nodes with NEDGE edges.
</li>
<li>
<b>G_ARC_NODE_COUNT</b> counts the number of nodes in a graph.
</li>
<li>
<b>G_ARC_TO_G_ADJ</b> converts an arc list graph to an adjacency graph.
</li>
<li>
<b>G_CODE_BACK</b> computes a graph code via backtracking.
</li>
<li>
<b>G_CODE_BRUTE</b> computes a graph code via brute force.
</li>
<li>
<b>G_CODE_CAND</b> finds candidates for a maximal graph code ordering.
</li>
<li>
<b>G_CODE_COMPARE</b> compares two partial graph codes.
</li>
<li>
<b>G_CODE_PRINT</b> prints out a graph code.
</li>
<li>
<b>G_COMPARE</b> determines if graphs G1 and G2 are isomorphic.
</li>
<li>
<b>G_CONNECT_RANDOM</b> generates a random connected graph.
</li>
<li>
<b>G_DEGREE</b> computes the degree of each node in a graph.
</li>
<li>
<b>G_DEGREE_MAX</b> computes the maximum node degree of a graph.
</li>
<li>
<b>G_DEGREE_SEQ</b> computes the degree sequence of a graph.
</li>
<li>
<b>G_EDGE_COUNT</b> counts the number of edges in a graph.
</li>
<li>
<b>G_EXAMPLE_BUSH</b> sets up the adjacency information for the bush graph.
</li>
<li>
<b>G_EXAMPLE_CUBE</b> sets up the adjacency information for the cube graph.
</li>
<li>
<b>G_EXAMPLE_DODECAHEDRON</b> sets adjacency for the dodecahedron graph.
</li>
<li>
<b>G_EXAMPLE_OCTO</b> sets up an 8 node example graph.
</li>
<li>
<b>G_EXAMPLE_TWIG</b> sets up the adjacency information for the twig graph.
</li>
<li>
<b>G_ORDER_CODE</b> returns the graph code for a specific node ordering.
</li>
<li>
<b>G_PRINT</b> prints out an adjacency matrix.
</li>
<li>
<b>G_RANDOM</b> generates a random graph on NNODE nodes with NEDGE edges.
</li>
<li>
<b>I4_SWAP</b> switches two I4's.
</li>
<li>
<b>I4_UNIFORM</b> returns a scaled pseudorandom I4.
</li>
<li>
<b>I4MAT_PERM</b> permutes the rows and columns of a square integer matrix.
</li>
<li>
<b>I4MAT_PERM_RANDOM</b> selects a random permutation of an integer matrix.
</li>
<li>
<b>I4MAT_PRINT</b> prints an integer matrix.
</li>
<li>
<b>I4MAT_PRINT_SOME</b> prints some of an integer matrix.
</li>
<li>
<b>I4MAT_ROW_COMPARE</b> compares two arrays of row vectors.
</li>
<li>
<b>I4ROW_COMPARE</b> compares two rows of a integer array.
</li>
<li>
<b>I4ROW_SORT_D</b> descending sorts the rows of an integer array.
</li>
<li>
<b>I4ROW_SORT2_D</b> descending sorts the elements of each row of an integer array.
</li>
<li>
<b>I4ROW_SWAP</b> swaps two rows of an integer array.
</li>
<li>
<b>I4VEC_BACKTRACK</b> supervises a backtrack search for an integer vector.
</li>
<li>
<b>I4VEC_COMPARE</b> compares two integer vectors.
</li>
<li>
<b>I4VEC_HEAP_A</b> reorders an array of integers into an ascending heap.
</li>
<li>
<b>I4VEC_HEAP_D</b> reorders an array of integers into an descending heap.
</li>
<li>
<b>I4VEC_INDICATOR</b> sets an integer vector to the indicator vector.
</li>
<li>
<b>I4VEC_NONZERO_COUNT</b> counts the nonzero entries in an integer vector
</li>
<li>
<b>I4VEC_ORDER_TYPE</b> determines if an integer array is (non)strictly ascending/descending.
</li>
<li>
<b>I4VEC_PERM_RANDOM</b> selects a random permutation of an integer vector.
</li>
<li>
<b>I4VEC_PRINT</b> prints an integer vector.
</li>
<li>
<b>I4VEC_SORT_HEAP_A</b> ascending sorts an integer array using heap sort.
</li>
<li>
<b>I4VEC_SORT_HEAP_D</b> descending sorts an integer array using heap sort.
</li>
<li>
<b>I4VEC_SORTED_UNIQUE_COUNT</b> counts unique elements in a sorted integer array.
</li>
<li>
<b>I4VEC_UNIFORM</b> returns a vector of integer pseudorandom numbers.
</li>
<li>
<b>I4VEC2_COMP</b> compares pairs of integers stored in two vectors.
</li>
<li>
<b>I4VEC2_SORT_D</b> descending sorts a vector of pairs of integers.
</li>
<li>
<b>I4VEC2_UNIQ</b> keeps the unique elements in a array of pairs of integers.
</li>
<li>
<b>KSUB_RANDOM</b> selects a random subset of size K from a set of size N.
</li>
<li>
<b>MG_ADJ_MAX_MAX</b> computes the adjacency maximum maximum of a multigraph.
</li>
<li>
<b>MG_ADJ_MAX_SEQ</b> computes the adjacency maximum sequence of a multigraph.
</li>
<li>
<b>MG_ADJ_SEQ</b> computes the adjacency sequence of a multigraph.
</li>
<li>
<b>MG_CODE_BACK</b> computes a multigraph code via backtracking.
</li>
<li>
<b>MG_CODE_BRUTE</b> computes a multigraph code via brute force.
</li>
<li>
<b>MG_CODE_CAND</b> finds candidates for a maximal multigraph code ordering.
</li>
<li>
<b>MG_CODE_COMPARE</b> compares two partial multigraph codes.
</li>
<li>
<b>MG_CODE_PRINT</b> prints out a multigraph code.
</li>
<li>
<b>MG_COMPARE</b> determines if multigraphs G1 and G2 are isomorphic.
</li>
<li>
<b>MG_DEGREE</b> computes the degree of each node of a multigraph.
</li>
<li>
<b>MG_DEGREE_MAX</b> computes the maximum node degree of a multigraph.
</li>
<li>
<b>MG_DEGREE_SEQ</b> computes the degree sequence of a multigraph.
</li>
<li>
<b>MG_EDGE_COUNT</b> counts the number of edges in a multigraph.
</li>
<li>
<b>MG_EXAMPLE_OCTO</b> sets up an 8 node example multigraph.
</li>
<li>
<b>MG_ORDER_CODE</b> returns the multigraph code for a specific node ordering.
</li>
<li>
<b>MG_PRINT</b> prints out an adjacency matrix for a multigraph.
</li>
<li>
<b>MG_RANDOM</b> generates a random multigraph on NNODE nodes with NEDGE edges.
</li>
<li>
<b>NODE_ORDER_PRINT</b> prints out a node ordering.
</li>
<li>
<b>PERM_CHECK</b> checks that a vector represents a permutation.
</li>
<li>
<b>PERM_CYCLE</b> analyzes a permutation.
</li>
<li>
<b>PERM_FREE</b> reports the number of unused items in a partial permutation.
</li>
<li>
<b>PERM_NEXT</b> computes all of the permutations on N objects, one at a time.
</li>
<li>
<b>PERM_RANDOM</b> selects a random permutation of N objects.
</li>
<li>
<b>PRUEFER_TO_TREE_ARC</b> is given a Pruefer code, and computes the tree.
</li>
<li>
<b>R4_UNIFORM_01</b> returns a unit pseudorandom R4.
</li>
<li>
<b>R8MAT_PRINT</b> prints an R8MAT.
</li>
<li>
<b>R8MAT_PRINT_SOME</b> prints some of an R8MAT.
</li>
<li>
<b>R8_NORMAL_01</b> returns a unit pseudonormal R8.
</li>
<li>
<b>R8_UNIFORM_01</b> returns a unit pseudorandom R8.
</li>
<li>
<b>SORT_HEAP_EXTERNAL</b> externally sorts a list of items into ascending order.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
<li>
<b>TREE_ARC_RANDOM</b> selects a random labeled tree and its Pruefer code.
</li>
<li>
<b>WG_RANDOM</b> generates a random weighted graph.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 27 November 2006.
</i>
<!-- John Burkardt -->
</body>
</html>