-
Notifications
You must be signed in to change notification settings - Fork 29
/
dsen2cr_pytorch_model.py
189 lines (150 loc) · 8.02 KB
/
dsen2cr_pytorch_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import torch
import torch.nn as nn
from torch.nn import init
from .base_model import BaseModel
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # match IDs of nvidia-smi
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # only set device 0 visible
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available(): torch.cuda.set_device(0)
class StackedResnetModel(BaseModel):
def name(self):
return 'stacked_resnet'
def initialize(self, opt):
# define network, initialize ("kaiming-uniform" = He init.)
BaseModel.initialize(self, opt)
self.netResNet = init_net(ResnetStackedArchitecture(), "kaiming-uniform", self.gpu_ids)
self.model_names = ['ResNet']
# define optimizer, see section 6.1.2
# no learning rate schedule is applied, see section 7.1
# torch has no Nesterov-Adam, so long take Adam with lr=1*10**-3, see section 6.1.3
# --> saw 1*10**-3 being too large, changed it to 7*10**-4
self.optimizer = torch.optim.Adam(self.netResNet.parameters(), lr=7*10**-4, betas=(0.9, 0.999))
self.optimizers = [self.optimizer]
self.lambda_reg = 1.0 # see section 6.6
# initialize metrics calculated/updated on val split
self.loss_eval_precision = 0
self.loss_eval_recall = 0
self.loss_eval_f1 = 0
self.loss_names = ["cloud_adaptive", "target_reg", "CARL", "MAE", "RMSE", "eval_precision", "eval_recall", "eval_f1"]
self.visual_names = ['sar_RGB', 'cloudy_RGB', 'cloud_mask_RGB', 'cloud_free_RGB', 'declouded_RGB']
def set_input(self, input):
# concatenate VV + VH SAR with 13-channel MS
self.sar = input["A"].to(self.device)
self.cloudy = input["B"].to(self.device)
self.cloud_free = input["C"].to(self.device)
# for synthetic data, the cloud mask will be the ground-truth synthetic cloud noise with values in [0, 1]
self.cloud_mask = input["meta"]["cloud_mask"].to(self.device)
self.input = torch.cat([self.cloudy, self.sar], dim=1)
# set images for visdom plotting
self.sar_RGB = self.sar[:, [0], ...] - 1 # map values from [0, 2] to [-1, 1]
self.cloudy_RGB = (self.cloudy[:, [3,2,1], ...] / 5) * 2 - 1 # map values from [0, 5] to [-1, 1]
self.cloud_free_RGB = (self.cloud_free[:, [3,2,1], ...] / 5) * 2 - 1 # map values from [0, 5] to [-1, 1]
self.cloud_mask_RGB = self.cloud_mask[:, [0], ...] * 2 - 1 # map values from [0, 1] to [-1, 1]
def forward(self):
self.declouded = self.netResNet(self.input)
self.declouded_RGB = torch.clamp(self.declouded[:, [3, 2, 1], ...] / 5, 0, 1) * 2 - 1 # map values from [0, 5] to [-1, 1]
def optimize_parameters(self):
# forward
self.forward()
self.set_requires_grad([self.netResNet], True)
self.optimizer.zero_grad()
# define losses, see section 4.3
N_tot = self.cloud_free.shape.numel() # total number of pixels in batch images = B x C x H x W, see section 4.3.1
self.loss_cloud_adaptive = torch.norm(self.cloud_mask * (self.declouded - self.cloud_free) + # cloudy area
(1-self.cloud_mask) * (self.declouded - self.cloudy), 1) / N_tot # cloud-free area
self.loss_target_reg = torch.norm(self.declouded - self.cloud_free, 1) / N_tot
self.loss_CARL = self.loss_cloud_adaptive + self.lambda_reg * self.loss_target_reg
# define additional losses, see section 3.3
# same as self.loss_target_reg, except we norm pixel values to [0, 1]
self.loss_MAE = torch.norm(torch.clamp(self.declouded / 5, 0, 1) -
torch.clamp(self.cloud_free / 5, 0, 1), 1) / N_tot
self.loss_RMSE = torch.sqrt(torch.norm(torch.clamp(self.declouded / 5, 0, 1) -
torch.clamp(self.cloud_free / 5, 0, 1), 2) / N_tot)
# first probe gradient norm before clipping
"""
total_norm = 0
for p in self.netResNet.parameters():
param_norm = p.grad.data.norm(2)
total_norm += param_norm.item() ** 2
total_norm = total_norm ** (1. / 2)
print(total_norm)
"""
# clip gradients to protect against a batch of crazy samples
torch.nn.utils.clip_grad_norm_(self.netResNet.parameters(), 5.)
self.loss_CARL.backward() # backprop loss
self.optimizer.step() # update parameters with gradients
def init_net(net, init_type="kaiming-uniform", gpu_ids=[]):
if len(gpu_ids) > 0:
assert(torch.cuda.is_available())
net.to(gpu_ids[0])
net = torch.nn.DataParallel(net, gpu_ids)
init_weights(net, init_type)
return net
# see section 6.2.1
def init_weights(net, init_type="kaiming-uniform", gain=0.02):
def init_func(m):
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == "kaiming-uniform":
init.kaiming_uniform_(m.weight.data, mode='fan_in', nonlinearity='relu')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, gain)
init.constant_(m.bias.data, 0.0)
print('initialize network with %s' % init_type)
net.apply(init_func)
class ResnetStackedArchitecture(nn.Module):
def __init__(self):
super(ResnetStackedArchitecture, self).__init__()
self.F = 256
self.B = 16
self.kernel_size = 3
self.padding_size= 1
self.scale_res = 0.1
self.dropout = False
model = [nn.Conv2d(2+13, self.F, kernel_size=self.kernel_size, padding=self.padding_size, bias=True),
nn.ReLU(True)]
# generate a given number of blocks
for i in range(self.B):
model += [ResnetBlock(self.F, use_dropout=self.dropout, use_bias=True,
res_scale=self.scale_res, padding_size=self.padding_size)]
model += [nn.Conv2d(self.F, 13, kernel_size=self.kernel_size, padding=self.padding_size, bias=True)]
self.model = nn.Sequential(*model)
def forward(self, input):
# long-skip connection: add cloudy MS input (excluding the trailing two SAR channels) and model output
return input[:, :-2, ...] + self.model(input)
# Define a resnet block
class ResnetBlock(nn.Module):
def __init__(self, dim, use_dropout, use_bias, res_scale=0.1, padding_size=1):
super(ResnetBlock, self).__init__()
self.res_scale = res_scale
self.padding_size = padding_size
self.conv_block = self.build_conv_block(dim, use_dropout, use_bias)
# conv_block:
# CONV (pad, conv, norm),
# RELU (relu, dropout),
# CONV (pad, conv, norm)
def build_conv_block(self, dim, use_dropout, use_bias):
conv_block = []
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=self.padding_size, bias=use_bias)]
conv_block += [nn.ReLU(True)]
if use_dropout:
conv_block += [nn.Dropout(0.2)]
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=self.padding_size, bias=use_bias)]
return nn.Sequential(*conv_block)
def forward(self, x):
# add residual mapping
out = x + self.res_scale * self.conv_block(x)
return out