-
Notifications
You must be signed in to change notification settings - Fork 15
/
utils.py
122 lines (103 loc) · 5.08 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#*
# @file Different utility functions
# Copyright (c) Zhewei Yao, Amir Gholami
# All rights reserved.
# This file is part of HessianFlow library.
#
# HessianFlow is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# HessianFlow is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with HessianFlow. If not, see <http://www.gnu.org/licenses/>.
#*
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
def getData(name = 'cifar10', train_bs = 128, test_bs = 1000):
if name == 'svhn':
train_loader = torch.utils.data.DataLoader(
datasets.SVHN('../data', split = 'extra', download = True,
transform = transforms.Compose([
transforms.ToTensor()
])),
batch_size = train_bs, shuffle = True)
test_loader = torch.utils.data.DataLoader(
datasets.SVHN('../data', split = 'test', download = True, transform = transforms.Compose([
transforms.ToTensor()
])),
batch_size = test_bs, shuffle=False)
if name == 'mnist':
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train = True, download = True,
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size = train_bs, shuffle = True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train = False, transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size = test_bs, shuffle = False)
if name == 'cifar10':
transform_train = transforms.Compose([
#transforms.RandomCrop(32, padding = 4),
#transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
#transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
#transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = datasets.CIFAR10(root='../data', train = True, download = True, transform = transform_train)
train_loader = torch.utils.data.DataLoader(trainset, batch_size = train_bs, shuffle = True)
testset = datasets.CIFAR10(root='../data', train = False, download = False, transform = transform_test)
test_loader = torch.utils.data.DataLoader(testset, batch_size = test_bs, shuffle = False)
if name == 'cifar100':
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding = 4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = datasets.CIFAR100(root='../data', train = True, download = True, transform = transform_train)
train_loader = torch.utils.data.DataLoader(trainset, batch_size = train_bs, shuffle = True)
testset = datasets.CIFAR100(root='../data', train = False, download = False, transform = transform_test)
test_loader = torch.utils.data.DataLoader(testset, batch_size = test_bs, shuffle = False)
if name == 'tinyimagenet':
normalize = transforms.Normalize(mean = [0.44785526394844055, 0.41693055629730225, 0.36942949891090393],
std = [0.2928885519504547, 0.28230994939804077, 0.2889912724494934])
train_dataset = datasets.ImageFolder(
'../data/tiny-imagenet-200/train',
transforms.Compose([
transforms.RandomCrop(64, padding = 4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size = train_bs, shuffle = True, num_workers = 4, pin_memory = False)
test_dataset = datasets.ImageFolder(
'../data/tiny-imagenet-200/val',
transforms.Compose([
transforms.ToTensor(),
normalize,
]))
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size = test_bs, shuffle = False)
return train_loader, test_loader