forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
standard_runner.py
443 lines (354 loc) · 16.7 KB
/
standard_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
# Copyright 2021 The Orbit Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""AbstractTrainer/Evaluator subclasses with added functionality.
The classes in this module provide some additional structure to the bare
`AbstractTrainer`/`AbstractEvaluator` APIs.
Both `StandardTrainer` and `StandardEvaluator` split the train/eval loops into
"begin", "step", and "end" methods, and provide an implementation of the loop
itself that makes calls to the relevant step method.
`StandardTrainer` supports running the loop using the TF while loop construct
for added performance (particularly on TPUs). It additionally provides some
functionality to make writing summaries from inside a model more performant when
running on TPUs.
These classes are intended to work well in common settings, however there may
be use cases these classes don't support (for instance, `StandardEvaluator` in
particular doesn't support running full evaluations over multiple different eval
datasets). Users are encouraged to simply fall back to custom `AbstractTrainer`
and `AbstractEvaluator` subclasses in these cases.
"""
import abc
from typing import Any, Optional
import dataclasses
from orbit import runner
from orbit.utils import loop_fns
import tensorflow as tf
@dataclasses.dataclass(frozen=True)
class StandardTrainerOptions:
"""Advanced options for `orbit.StandardTrainer`.
Attributes:
use_tf_function: A boolean indicating whether to apply `tf.function` to the
training loop. This will only affect the body of the loop (involving
`train_step`); `train_loop_begin` and `train_loop_end` will always be run
in eager mode.
use_tf_while_loop: A boolean indicating whether to run the training loop
using a `tf.while_loop`. If `True`, `use_tf_function` must also be `True`.
use_tpu_summary_optimization: A boolean indicating whether to enable a
performance optimization for summaries in TPUs. Writing summaries
conditionally with outside compilation on TPUs can be extremely slow. If
`True`, this optimization creates two `tf.function`s with two XLA programs
(one with summary calls, and one without). The program with summaries runs
only for one step when summaries should be recorded.
"""
use_tf_function: bool = True
use_tf_while_loop: bool = True
use_tpu_summary_optimization: bool = False
class StandardTrainer(runner.AbstractTrainer, metaclass=abc.ABCMeta):
"""Implements standard functionality on top of the AbstractTrainer API.
This class structures the training "inner loop" roughly as follows:
train_loop_begin()
for _ in range(num_steps):
train_step(train_iterator)
return train_loop_end()
Calls to `train_loop_begin` and `train_loop_end` are always done in eager
mode, while the loop/`train_step` may be implemented using `tf.while` and/or
`tf.function`, as determined by the `options` passed to `__init__`.
"""
def __init__(self, train_dataset, options: StandardTrainerOptions = None):
"""Initializes the `StandardTrainer` instance.
Args:
train_dataset: A `tf.nest`-compatible structure of `tf.data.Dataset` or
`DistributedDataset`.
options: An `orbit.StandardTrainerOptions` instance.
"""
options = options or StandardTrainerOptions()
if options.use_tf_while_loop and not options.use_tf_function:
raise ValueError("`use_tf_while_loop=True` and `use_tf_function=False` "
"is not supported")
if options.use_tpu_summary_optimization and not options.use_tf_while_loop:
raise ValueError("`use_tpu_summary_optimization=True` and "
"`use_tf_while_loop=False` is not supported")
self._train_options = options
self._train_dataset = train_dataset
self._train_iter = None
self._train_loop_fn = None
def create_train_loop_fn(self):
"""Creates a training loop from the current step function and options.
Returns:
The train loop function, i.e. wrapper of multiple train steps.
"""
train_step_fn = self.train_step
if self._train_options.use_tf_while_loop:
loop_fn = loop_fns.create_tf_while_loop_fn(train_step_fn)
if self._train_options.use_tpu_summary_optimization:
loop_fn = loop_fns.LoopFnWithSummaries(loop_fn)
else:
loop_fn = tf.function(loop_fn)
else:
if self._train_options.use_tf_function:
train_step_fn = tf.function(train_step_fn)
loop_fn = loop_fns.create_loop_fn(train_step_fn)
return loop_fn
def train(self, num_steps: tf.Tensor) -> Optional[runner.Output]:
"""Implements `num_steps` steps of training.
Args:
num_steps: The number of training steps to run. This corresponds directly
to the number of calls made to `train_step`.
Returns:
The output of `train_loop_end`.
"""
self.train_loop_begin()
if self._train_loop_fn is None:
self._train_loop_fn = self.create_train_loop_fn()
if self._train_iter is None:
self._train_iter = tf.nest.map_structure(iter, self.train_dataset)
self._train_loop_fn(self._train_iter, num_steps)
return self.train_loop_end()
def train_loop_begin(self):
"""Called once at the beginning of the training loop.
This method is always called in eager mode, and is a good place to reset
metrics that accumulate values over multiple steps of training.
Note that this method is called before dataset iterator creation.
"""
pass
@abc.abstractmethod
def train_step(self, iterator):
"""Implements one step of training.
What a "step" consists of is up to the implementer. When using distribution
strategies, the call to this method takes place in the "cross-replica
context" for generality, to allow e.g. multiple iterator dequeues and calls
to `strategy.run`.
Note that if `use_tf_function=True`, all the code inside `train_step` should
be compatible with `tf.function` tracing (and in particular, any state
modifications involving `self` should be avoided). In some cases, non-
`tf.function` compatible code can be moved to `train_loop_begin` or
`train_loop_end`, which always execute eagerly.
Args:
iterator: A `tf.nest`-compatible structure of `tf.data.Iterator` or
`DistributedIterator`. The structure of this input matches the structure
of `train_dataset` as passed to `__init__`.
"""
pass
def train_loop_end(self) -> Optional[runner.Output]:
"""Called once at the end of the training loop.
This method is always called in eager mode, and is a good place to get
metric results. The value returned from this function will be returned as-is
from the `train` method implementation provided by `StandardTrainer`.
Returns:
The function may return a dictionary of `Tensors`, which will be
written to logs and as TensorBoard summaries. It can also be a
nested dictionary, yielding a hierarchy of summary directories.
"""
pass
@property
def train_dataset(self):
"""The current training dataset."""
return self._train_dataset
@train_dataset.setter
def train_dataset(self, train_dataset):
"""Sets a new training dataset, replacing the current one.
Any unprocessed examples in the current dataset are discarded.
Args:
train_dataset: A `tf.nest`-compatible structure of `tf.data.Dataset` or
`DistributedDataset`.
"""
self._train_dataset = train_dataset
self._train_iter = None
@dataclasses.dataclass(frozen=True)
class StandardEvaluatorOptions:
"""Advanced options for the `orbit.StandardEvaluator`.
Attributes:
use_tf_function: A boolean indicating whether to apply `tf.function` to the
evaluation loop. This will only affect the body of the loop (involving
`eval_step`); `eval_loop_begin` and `eval_loop_end` will always be run
in eager mode.
use_tf_while_loop: A boolean indicating whether to run the evaluation loop
using a `tf.while_loop`. If `True`, `use_tf_function` must also be `True`.
recreate_iterator_for_each_eval: A boolean indicating whether to recreate a
new iterator for the evaluation dataset before each round of evaluation,
which implies each round of evaluation starts from the beginning of
the evaluation dataset. For example, the evaluation dataset is
`[1, 2, 3, 4]`, batch size is 1 and evaluation steps is 2. If `True`, the
data to be evaluated is [1, 2] every time. If `False`, the iterator
state is maintained between calls to `StandardEvaluator.evaluate()`.
"""
use_tf_function: bool = True
use_tf_while_loop: bool = False
recreate_iterator_for_each_eval: bool = True
class StandardEvaluator(runner.AbstractEvaluator, metaclass=abc.ABCMeta):
"""Implements the standard functionality of AbstractEvaluator APIs.
This class structures evaluation roughly as follows:
state = eval_begin()
for _ in range(num_steps):
step_outputs = eval_step(eval_iterator)
state = eval_reduce(state, step_outputs)
return eval_end(state)
Calls to `eval_begin` and `eval_end` are always done in eager
mode, while `eval_step` may be compiled with `tf.function` as determined by
the `options` passed to `__init__`. `eval_reduce` is in eager mode if
`use_tf_while_loop=False` in `StandardEvaluatorOptions`, but in graph mode if
`use_tf_while_loop=True`.
This class does not support completely evaluating multiple different datasets
(i.e., where every example of each dataset should be processed, as opposed to
running for a fixed number of evaluation steps). A custom `AbstractEvaluator`
is recommended in this case.
"""
def __init__(self, eval_dataset, options: StandardEvaluatorOptions = None):
"""Initializes the `StandardEvaluator` instance.
Args:
eval_dataset: A `tf.nest`-compatible structure of `tf.data.Dataset` or
`DistributedDataset`.
options: An `orbit.StandardEvaluatorOptions` instance.
"""
options = options or StandardEvaluatorOptions()
if options.use_tf_while_loop and not options.use_tf_function:
raise ValueError("`use_tf_while_loop=True` and `use_tf_function=False` "
"is not supported")
self._eval_options = options
self._eval_dataset = eval_dataset
self._eval_iter = None
self._eval_loop_fn = None
def create_eval_loop_fn(self, has_state: bool):
"""Creates an eval loop from the current step function and options.
Args:
has_state: If the step function has state, state will be kept in the loop.
Returns:
The eval loop function, i.e. wrapper of multiple eval steps.
"""
eval_step_fn = self.eval_step
if self._eval_options.use_tf_while_loop:
# TODO(b/176126742): tf.while_loop doesn't support `None` as a loop input
# even when it is not used inside the loop. To workaround this limitation,
# we have to build two tf.functions for it.
if has_state:
loop_fn = loop_fns.create_tf_while_loop_fn_with_state(eval_step_fn)
else:
loop_fn = loop_fns.create_tf_while_loop_fn(eval_step_fn)
loop_fn = tf.function(loop_fn)
else:
if self._eval_options.use_tf_function:
eval_step_fn = tf.function(eval_step_fn)
loop_fn = loop_fns.create_loop_fn(eval_step_fn)
return loop_fn
def evaluate(self, num_steps: tf.Tensor) -> Optional[runner.Output]:
"""Implements `num_steps` steps of evaluation.
Args:
num_steps: The number of evaluation steps to run. When this is -1,
evaluation proceeds until a call to `eval_step` raises a `StopIteration`
or `tf.errors.OutOfRangeError`.
Returns:
The output of `self.eval_end()`.
Raises:
ValueError: If `options.use_tf_while_loop` is `True` and `num_steps` is
unspecified.
"""
if self._eval_options.use_tf_while_loop and num_steps == -1:
raise ValueError("Looping until exhausted is not supported if "
"`options.use_tf_while_loop` is `True`")
outputs = self.eval_begin() # pylint: disable=assignment-from-no-return
has_state = outputs is not None
if self._eval_loop_fn is None:
self._eval_loop_fn = self.create_eval_loop_fn(has_state)
# If `recreate_iterator_for_each_eval` is `True`, `self._eval_iter` is
# always None.
if self._eval_iter is None:
eval_iter = tf.nest.map_structure(iter, self.eval_dataset)
if not self._eval_options.recreate_iterator_for_each_eval:
self._eval_iter = eval_iter
else:
eval_iter = self._eval_iter
if self._eval_options.use_tf_while_loop and not has_state:
self._eval_loop_fn(eval_iter, num_steps)
else:
outputs = self._eval_loop_fn(
eval_iter, num_steps, state=outputs, reduce_fn=self.eval_reduce)
if outputs is None:
return self.eval_end()
else:
return self.eval_end(outputs)
def eval_begin(self) -> Any:
"""Called once at the beginning of the evaluation.
This method is always called in eager mode, and is a good place to reset
metrics that accumulate values over the course of evaluation.
Note that this method is called before dataset iterator creation.
Returns:
An value to pass as the `state` argument to `eval_reduce`.
"""
pass
@abc.abstractmethod
def eval_step(self, iterator) -> Any:
"""Implements one step of evaluation.
What a "step" consists of is up to the implementer. When using distribution
strategies, the call to this method takes place in the "cross-replica
context" for generality, to allow e.g. multiple iterator dequeues and calls
to `strategy.run`.
Note that if `use_tf_function=True`, all the code inside `eval_step` should
be compatible with `tf.function` tracing (and in particular, any state
modifications involving `self` should be avoided). In some cases, non-
`tf.function` compatible code can be moved to `eval_loop_begin`,
`eval_reduce`, or `eval_loop_end`, which always execute eagerly.
Args:
iterator: A `tf.nest`-compatible structure of `tf.data.Iterator` or
`DistributedIterator`.
Returns:
An output which is passed as `step_outputs` argument into `eval_reduce`
function.
"""
pass
def eval_end(self, *args) -> Optional[runner.Output]:
"""Called at the end of the evaluation.
Called once at the end of evaluation.
This method is always called in eager mode, and is a good place to get
metric results. The value returned from this function will be returned as-is
from the `evaluate` method implementation provided by `StandardEvaluator`.
Args:
*args: The outputs from `eval_reduce` for the last eval step, if they are
non-`None` (if they are `None`, nothing is passed).
Returns:
The function may return a dictionary of `Tensors`, which will be
written to logs and as TensorBoard summaries. It can also be a
nested dictionary, yielding a hierarchy of summary directories.
"""
pass
def eval_reduce(self,
state: Any = None,
step_outputs: Optional[runner.Output] = None) -> Any:
"""A function to perform per-step reduction on the evaluation outputs.
This is useful for passing state throughout evaluation, especially in cases
where maintaining or accumulating state is hard to accomplish using
`tf.metrics.Metric` or other `tf.Variable`-based approaches. For instance,
it can be used to easily accumulate all per-example losses from the full
evaluation for subsequent processing in `eval_end()`.
Args:
state: A state being mainted throughout the evaluation.
step_outputs: Outputs from the current evaluation step.
Returns:
An output which is passed as the `state` argument to this function for the
next step. After evaluation is finished, the output from last step will be
passed to `eval_end`.
"""
pass
@property
def eval_dataset(self):
"""The current evaluation dataset."""
return self._eval_dataset
@eval_dataset.setter
def eval_dataset(self, eval_dataset):
"""Sets a new eval dataset, replacing the current one.
Any unprocessed examples in the current dataset are discarded.
Args:
eval_dataset: A `tf.nest`-compatible structure of `tf.data.Dataset` or
`DistributedDataset`.
"""
self._eval_dataset = eval_dataset
self._eval_iter = None