-
Notifications
You must be signed in to change notification settings - Fork 78
/
DGAClassificationAll.py
168 lines (134 loc) · 6.56 KB
/
DGAClassificationAll.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
__author__ = 'andrewa'
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.pylab as pylab
import sklearn.ensemble
from sklearn.feature_extraction.text import CountVectorizer
import operator
dataframe_dict = {'alexa': [], 'conficker': [], 'cryptolocker': [], 'zeus': [], 'pushdo': [], 'rovnix': [], 'tinba': [],
'matsnu': [], 'ramdo': []}
word_dataframe = pd.read_csv('help/words.txt', names=['word'], header=None, dtype={'word': np.str}, encoding='utf-8')
word_dataframe = word_dataframe[word_dataframe['word'].map(lambda x: str(x).isalpha())]
word_dataframe = word_dataframe.applymap(lambda x: str(x).strip().lower())
word_dataframe = word_dataframe.dropna()
word_dataframe = word_dataframe.drop_duplicates()
for i, v in dataframe_dict.iteritems():
if i == 'alexa':
v = pd.read_csv('all_legit.txt', names=['uri'], header=None, encoding='utf-8')
v['domain'] = v.applymap(lambda x: x.split('.')[0].strip().lower())
del v['uri']
v['class'] = 'legit'
dataframe_dict[i] = v
else:
v = pd.read_csv('dga_wordlists/' + i + '.txt', names=['uri'], header=None, encoding='utf-8')
v['domain'] = v.applymap(lambda x: x.split('.')[0].strip().lower())
del v['uri']
v['class'] = 'dga'
dataframe_dict[i] = v
print '# done parsing'
all_domains = pd.concat([dataframe_dict['alexa'], dataframe_dict['conficker'], dataframe_dict['cryptolocker'],
dataframe_dict['zeus'], dataframe_dict['pushdo'], dataframe_dict['rovnix'],
dataframe_dict['tinba'], dataframe_dict['matsnu'], dataframe_dict['ramdo']],
ignore_index=True)
all_domains['length'] = [len(x) for x in all_domains['domain']]
import math
from collections import Counter
def entropy(s):
p, lns = Counter(s), float(len(s))
return -sum(count / lns * math.log(count / lns, 2) for count in p.values())
all_domains['entropy'] = [entropy(x) for x in all_domains['domain']]
# all_domains.boxplot('length','class')
# pylab.ylabel('Domain Length')
# all_domains.boxplot('entropy','class')
# pylab.ylabel('Domain Entropy')
# cond = all_domains['class'] != 'legit'
# dga = all_domains[cond]
# alexa = all_domains[~cond]
# plt.scatter(alexa['length'], alexa['entropy'], s=140, c='r', label='Legit', alpha=.4)
# plt.scatter(dga['length'], dga['entropy'], s=140, c='#aaaaff', label='DGA', alpha=.4)
# plt.legend()
# pylab.xlabel('Domain Length')
# pylab.ylabel('Domain Entropy')
# plt.show()
alexa_vc = CountVectorizer(analyzer='char', ngram_range=(3, 5), min_df=1e-4, max_df=1.0)
counts_matrix = alexa_vc.fit_transform(dataframe_dict['alexa']['domain'])
alexa_counts = np.log10(counts_matrix.sum(axis=0).getA1())
dict_vc = CountVectorizer(analyzer='char', ngram_range=(3, 5), min_df=1e-5, max_df=1.0)
counts_matrix = dict_vc.fit_transform(word_dataframe['word'])
dict_counts = np.log10(counts_matrix.sum(axis=0).getA1())
all_domains['alexa_grams'] = alexa_counts * alexa_vc.transform(all_domains['domain']).T
all_domains['word_grams'] = dict_counts * dict_vc.transform(all_domains['domain']).T
all_domains['diff'] = all_domains['alexa_grams'] - all_domains['word_grams']
print 'Done data'
# cond = all_domains['class'] != 'legit'
# dga = all_domains[cond]
# legit = all_domains[~cond]
# plt.scatter(legit['length'], legit['word_grams'], s=140, c='r', label='legit', alpha=.1)
# plt.scatter(dga['length'], dga['word_grams'], s=140, c='#aaaaff', label='DGA', alpha=.1)
# plt.legend()
# pylab.xlabel('Domain Length')
# pylab.ylabel('Dictionary NGram Matches')
# plt.show()
# cond = all_domains['class'] != 'legit'
# dga = all_domains[cond]
# legit = all_domains[~cond]
# plt.scatter(legit['length'], legit['diff'], s=140, c='r', label='Legit', alpha=.4)
# plt.scatter(dga['length'], dga['diff'], s=140, c='#aaaaff', label='DGA', alpha=.4)
# plt.legend()
# pylab.xlabel('Domain Length')
# pylab.ylabel('Diff')
# plt.show()
# weird_cond = (all_domains['class']=='legit') & (all_domains['word_grams']<3) & (all_domains['alexa_grams']<2)
# weird = all_domains[weird_cond]
# all_domains.loc[weird_cond, 'class'] = 'weird'
# not_weird = all_domains[all_domains['class'] != 'weird']
# X = not_weird.as_matrix(['length', 'entropy', 'alexa_grams', 'word_grams'])
# y = np.array(not_weird['class'].tolist())
X = all_domains.as_matrix(['length', 'entropy', 'alexa_grams', 'word_grams', 'diff'])
y = np.array(all_domains['class'].tolist())
from sklearn import cross_validation
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
clf1 = LogisticRegression(random_state=1)
clf1.fit(X_train, y_train)
clf2 = RandomForestClassifier(bootstrap=True, max_depth=None, class_weight="auto", min_samples_leaf=1,
min_samples_split=1, n_estimators=1500, n_jobs=40, oob_score=False,
random_state=1, verbose=1)
clf2.fit(X_train, y_train)
clf3 = GaussianNB()
clf3.fit(X_train, y_train)
clf4 = ExtraTreesClassifier()
clf4.fit(X_train, y_train)
eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3), ('etr', clf4)], voting='soft')
for clf, label in zip([clf1, clf2, clf3, clf4, eclf], ['Logistic Regression', 'Random Forest', 'naive Bayes',
'Extra Tree', 'Ensemble']):
scores = cross_validation.cross_val_score(clf, X_test, y_test, cv=5, scoring='accuracy')
print("Accuracy: %0.6f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))
from sklearn.metrics import confusion_matrix
y_pred = clf2.predict(X_test)
labels = ['legit', 'dga']
cm = confusion_matrix(y_test, y_pred, labels)
def plot_cm(cm, labels):
percent = (cm*100.0)/np.array(np.matrix(cm.sum(axis=1)).T) # Derp, I'm sure there's a better way
print 'Confusion Matrix Stats'
for i, label_i in enumerate(labels):
for j, label_j in enumerate(labels):
print "%s/%s: %.2f%% (%d/%d)" % (label_i, label_j, (percent[i][j]), cm[i][j], cm[i].sum())
fig = plt.figure()
ax = fig.add_subplot(111)
ax.grid(b=False)
cax = ax.matshow(percent, cmap='coolwarm')
pylab.title('Confusion matrix of the classifier')
fig.colorbar(cax)
ax.set_xticklabels([''] + labels)
ax.set_yticklabels([''] + labels)
pylab.xlabel('Predicted')
pylab.ylabel('True')
pylab.show()
plot_cm(cm, labels)