-
Notifications
You must be signed in to change notification settings - Fork 2
/
process_videos_debug.py
216 lines (189 loc) · 7.61 KB
/
process_videos_debug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
## -*- coding: utf-8 -*-
import glob
import os
from cv2 import destroyAllWindows
import matplotlib.pyplot as plt
import copy
import numpy as np
import cPickle as pkl
from time import time as tic
# Custom modules
import Functions as Fun
import VideoFunctions as VF
import ImageProcessingFunctions as IPF
import UserInputFunctions as UIF
# User parameters
folder = '..\\Data\\New Disk\\6.5mM SDS\\'
fileString = '**.mp4'
suffix = '_data.pkl'
#fileString = '*Dry*750RPM*.mp4'
diskFraction = 0.95
splashFraction = np.linspace(0.15,1.1,65)#[0.25,0.33,0.4,0.5,0.67,1.1]
step = 1
threshold1_ = 3
threshold1_0RPM_ = 4
threshold2_ = 5
threshold2_0RPM_ = 4
tShift_ = 4
checkMasks = False # Check quality of predrawn masks for each video
maskFile = 'maskData_1APR2016.pkl'
refPointFile = 'refPoint_31OCT2015.pkl'
homographyFile = 'offCenterTopView_1APR2016.pkl' # Use None for no transform
viewResults = True
viewInterval = 1
saveInterval = 600
saveData = True
continueAnalysis = True
figNum = 123
# Cleanup existing windows
plt.close('all')
destroyAllWindows()
t0 = tic()
t1 = tic()
# Get list of video files to process
pathToFiles = os.path.join(folder,fileString)
fileList = glob.glob(pathToFiles)
dataList = glob.glob(os.path.join(folder,'*' + suffix))
N = len(fileList)
hMatrix = 0
for i in range(0,N,1):
# Parse the filename to get video info
videoPath = fileList[i]
print os.path.split(videoPath)[1]
dataFile = fileList[i][:-4] + suffix
RPM = VF.get_RPM_from_file_name(videoPath)
fps = VF.get_FPS_from_file_name(videoPath)
flowRate = VF.get_flowRate_from_file_name(videoPath)
if flowRate > 2000:
splashFraction = np.append(np.linspace(0.2,0.67,30),
np.linspace(0.7,1.1,10))
threshold1_0RPM = 7
threshold2_0RPM = 7
tShift = 1
else:
splashFraction = np.linspace(0.2,1.1,20)
threshold1_0RPM = threshold1_0RPM_
threshold2_0RPM = threshold2_0RPM_
tShift = tShift_
if (flowRate >= 3000) and (RPM > 0):
threshold1_ = 25
else:
threshold1_ = 20
vid = VF.get_video_object(videoPath)
# Set thresholds for image processing to find boundaries
if RPM > 0:
threshold1 = threshold1_
threshold2 = threshold2_
else:
threshold1 = threshold1_0RPM
threshold2 = threshold2_0RPM
# if fps < 1000:
# threshold1 *= 3
# Ignore videos for which the reference frame has been rotated
if '_rot' in videoPath:
continue
# Load homography matrix then mask data
if hMatrix is 0:
# Load homography matrix
hMatrix = UIF.get_homography_matrix(homographyFile,vid)
# Get mask data for ignoring areas not of interest
maskData = UIF.get_mask_data(maskFile,vid,hMatrix,checkMasks)
if diskFraction < 1:
maskData = IPF.reduce_mask_radius(maskData,diskFraction)
# Get the region at which image intensity will be tracked
intensityRegion = UIF.get_intensity_region(refPointFile,vid)
# Find the "first" frame for beginning the analysis of the video and load
# the data structure for storing the image processing data
if (dataFile not in dataList) or continueAnalysis:
container = VF.get_data_structure(vid,fps,RPM,flowRate,dataFile,
dataList,hMatrix,maskData,
intensityRegion,splashFraction)
else:
print 'Already analyzed: %s' %videoPath
continue
# Parse video and stored data
nFrames = int(vid.get(7)) # number of frames in video
t0Frame = container['t0Frame']
data = np.array([(0,0)])
frameNumber = max(container['data'].keys())
temp = os.path.split(videoPath)[1]
print 'picking up analysis of %s from frame # %i of %i' %(temp,frameNumber,
nFrames)
wettedArea = container['wettedArea']
frame = VF.extract_frame(vid,frameNumber,hMatrix,maskData)
theta = -RPM/60./fps*360*(frameNumber-t0Frame)
check = copy.copy(maskData['mask'])
# Create splash mask
center = np.shape(frame)[0:2]#maskData['diskCenter']
center = [center[1]/2.0,center[0]/2.0]
R = splashFraction[container['splashIndex']]*maskData['diskRadius']
splashMask = IPF.create_circular_mask(frame,R,center)
# Loop through frames in the video and track wetted area
for j in range(frameNumber,nFrames,step):
# Show an update of results
if ((viewResults) and (not j%viewInterval)) or (not j%saveInterval):
plt.figure(figNum)
plt.cla()
if theta != 0:
frame = IPF.rotate_image(frame,theta,size=frame.shape)
tempFrame = copy.copy(frame)
tempFrame[wettedArea] = 255
tempFrame = np.dstack((tempFrame,frame,frame))
Fun.plt_show_image(tempFrame)
plt.plot(data[:,0],data[:,1],'b',center[0],center[1],'bx')
plt.title(temp)
plt.pause(.001)
# Compute the rotation angle relative to the first frame
theta = -RPM/60./fps*360*(j-t0Frame)
frame = VF.extract_frame(vid,j,hMatrix,maskData)
# Get the reference frame for background subtraction
if RPM == 0:
ind = max([j-tShift,t0Frame])
else:
if theta%(360) == 0:
print 'Exactly integer rotation from t0Frame at %i' %(j)
ind = t0Frame
ref = VF.extract_frame(vid,ind,hMatrix,maskData)
wettedArea = IPF.process_frame(frame,ref,wettedArea,theta,
threshold1,threshold2)
# wettedArea *= maskData['diskMask']
if np.any(wettedArea):
data = IPF.get_perimeter(wettedArea)
else:
data = np.array([(0,0)])
# Store data in container
container['wettedArea'] = wettedArea
container['data'][j] = data
container['theta'][j] = theta
# Save periodically
if (not j%saveInterval) and (saveData):
with open(dataFile,'wb') as f:
pkl.dump(container,f)
print '%i of %i completed after %f s.' %(j,nFrames,tic()-t1)
t1 = tic()
# Check progress of wavefront
if len(data) > 10:
rData = np.sqrt((data[:,0]-center[0])**2 + (data[:,1]-center[1])**2)
else:
rData = 0
# Remove splash marks
if (np.max(rData) >= 0.99*R)\
and (not container['splashRemoved'][container['splashIndex']]):
wettedArea *= splashMask
container['splashRemoved'][container['splashIndex']] = True
container['splashIndex'] += 1
R = splashFraction[container['splashIndex']]*maskData['diskRadius']
splashMask = IPF.create_circular_mask(frame,R,center)
print 'Splash marks removed at frame # %i' %(j)
check[wettedArea] = False
# print 'Number of dry pixels = ', np.sum(check)
if np.sum(check) > 100:
continue
else:
print 'Disk fully wet. Moving to next video.'
break
# Save at end
if saveData:
with open(dataFile,'wb') as f:
pkl.dump(container,f)
print 'Video %g of %g complete. Elapsed time: %f s.' %(i+1,N,tic()-t0)