-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
object.h
951 lines (890 loc) · 34.1 KB
/
object.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file tvm/runtime/object.h
* \brief A managed object in the TVM runtime.
*/
#ifndef TVM_RUNTIME_OBJECT_H_
#define TVM_RUNTIME_OBJECT_H_
#include <tvm/runtime/c_runtime_api.h>
#include <tvm/runtime/logging.h>
#include <string>
#include <type_traits>
#include <utility>
/*!
* \brief Whether or not use atomic reference counter.
* If the reference counter is not atomic,
* an object cannot be owned by multiple threads.
* We can, however, move an object across threads
*/
#ifndef TVM_OBJECT_ATOMIC_REF_COUNTER
#define TVM_OBJECT_ATOMIC_REF_COUNTER 1
#endif
#if TVM_OBJECT_ATOMIC_REF_COUNTER
#include <atomic>
#endif // TVM_OBJECT_ATOMIC_REF_COUNTER
namespace tvm {
namespace runtime {
/*!
* \brief Namespace for the list of type index.
* \note Use struct so that we have to use TypeIndex::ENumName to refer to
* the constant, but still able to use enum.
*/
struct TypeIndex {
enum {
/*! \brief Root object type. */
kRoot = 0,
// Standard static index assignments,
// Frontends can take benefit of these constants.
/*! \brief runtime::Module. */
kRuntimeModule = 1,
/*! \brief runtime::NDArray. */
kRuntimeNDArray = 2,
/*! \brief runtime::String. */
kRuntimeString = 3,
/*! \brief runtime::Array. */
kRuntimeArray = 4,
/*! \brief runtime::Map. */
kRuntimeMap = 5,
/*! \brief runtime::ShapeTuple. */
kRuntimeShapeTuple = 6,
/*! \brief runtime::PackedFunc. */
kRuntimePackedFunc = 7,
/*! \brief runtime::DRef for disco distributed runtime */
kRuntimeDiscoDRef = 8,
/*! \brief runtime::RPCObjectRef */
kRuntimeRPCObjectRef = 9,
// static assignments that may subject to change.
kRuntimeClosure,
kRuntimeADT,
kStaticIndexEnd,
/*! \brief Type index is allocated during runtime. */
kDynamic = kStaticIndexEnd
};
}; // namespace TypeIndex
/*!
* \brief base class of all object containers.
*
* Sub-class of objects should declare the following static constexpr fields:
*
* - _type_index:
* Static type index of the object, if assigned to TypeIndex::kDynamic
* the type index will be assigned during runtime.
* Runtime type index can be accessed by ObjectType::TypeIndex();
* - _type_key:
* The unique string identifier of the type.
* - _type_final:
* Whether the type is terminal type(there is no subclass of the type in the object system).
* This field is automatically set by macro TVM_DECLARE_FINAL_OBJECT_INFO
* It is still OK to sub-class a terminal object type T and construct it using make_object.
* But IsInstance check will only show that the object type is T(instead of the sub-class).
*
* The following two fields are necessary for base classes that can be sub-classed.
*
* - _type_child_slots:
* Number of reserved type index slots for child classes.
* Used for runtime optimization for type checking in IsInstance.
* If an object's type_index is within range of [type_index, type_index + _type_child_slots]
* Then the object can be quickly decided as sub-class of the current object class.
* If not, a fallback mechanism is used to check the global type table.
* Recommendation: set to estimate number of children needed.
* - _type_child_slots_can_overflow:
* Whether we can add additional child classes even if the number of child classes
* exceeds the _type_child_slots. A fallback mechanism to check global type table will be
* used. Recommendation: set to false for optimal runtime speed if we know exact number of children.
*
* Two macros are used to declare helper functions in the object:
* - Use TVM_DECLARE_BASE_OBJECT_INFO for object classes that can be sub-classed.
* - Use TVM_DECLARE_FINAL_OBJECT_INFO for object classes that cannot be sub-classed.
*
* New objects can be created using make_object function.
* Which will automatically populate the type_index and deleter of the object.
*
* \sa make_object
* \sa ObjectPtr
* \sa ObjectRef
*
* \code
*
* // Create a base object
* class BaseObj : public Object {
* public:
* // object fields
* int field0;
*
* // object properties
* static constexpr const uint32_t _type_index = TypeIndex::kDynamic;
* static constexpr const char* _type_key = "test.BaseObj";
* TVM_DECLARE_BASE_OBJECT_INFO(BaseObj, Object);
* };
*
* class LeafObj : public BaseObj {
* public:
* // fields
* int child_field0;
* // object properties
* static constexpr const uint32_t _type_index = TypeIndex::kDynamic;
* static constexpr const char* _type_key = "test.LeafObj";
* TVM_DECLARE_BASE_OBJECT_INFO(LeafObj, Object);
* };
*
* // The following code should be put into a cc file.
* TVM_REGISTER_OBJECT_TYPE(BaseObj);
* TVM_REGISTER_OBJECT_TYPE(LeafObj);
*
* // Usage example.
* void TestObjects() {
* // create an object
* ObjectRef leaf_ref(make_object<LeafObj>());
* // cast to a specific instance
* const LeafObj* leaf_ptr = leaf_ref.as<LeafObj>();
* ICHECK(leaf_ptr != nullptr);
* // can also cast to the base class.
* ICHECK(leaf_ref.as<BaseObj>() != nullptr);
* }
*
* \endcode
*/
class TVM_DLL Object {
public:
/*!
* \brief Object deleter
* \param self pointer to the Object.
*/
typedef void (*FDeleter)(Object* self);
/*! \return The internal runtime type index of the object. */
uint32_t type_index() const { return type_index_; }
/*!
* \return the type key of the object.
* \note this operation is expensive, can be used for error reporting.
*/
std::string GetTypeKey() const { return TypeIndex2Key(type_index_); }
/*!
* \return A hash value of the return of GetTypeKey.
*/
size_t GetTypeKeyHash() const { return TypeIndex2KeyHash(type_index_); }
/*!
* Check if the object is an instance of TargetType.
* \tparam TargetType The target type to be checked.
* \return Whether the target type is true.
*/
template <typename TargetType>
inline bool IsInstance() const;
/*!
* \return Whether the cell has only one reference
* \note We use stl style naming to be consistent with known API in shared_ptr.
*/
inline bool unique() const;
/*!
* \brief Get the type key of the corresponding index from runtime.
* \param tindex The type index.
* \return the result.
*/
static std::string TypeIndex2Key(uint32_t tindex);
/*!
* \brief Get the type key hash of the corresponding index from runtime.
* \param tindex The type index.
* \return the related key-hash.
*/
static size_t TypeIndex2KeyHash(uint32_t tindex);
/*!
* \brief Get the type index of the corresponding key from runtime.
* \param key The type key.
* \return the result.
*/
static uint32_t TypeKey2Index(const std::string& key);
#if TVM_OBJECT_ATOMIC_REF_COUNTER
using RefCounterType = std::atomic<int32_t>;
#else
using RefCounterType = int32_t;
#endif
static constexpr const char* _type_key = "runtime.Object";
static uint32_t _GetOrAllocRuntimeTypeIndex() { return TypeIndex::kRoot; }
static uint32_t RuntimeTypeIndex() { return TypeIndex::kRoot; }
// Default object type properties for sub-classes
static constexpr bool _type_final = false;
static constexpr uint32_t _type_child_slots = 0;
static constexpr bool _type_child_slots_can_overflow = true;
// member information
static constexpr bool _type_has_method_visit_attrs = true;
static constexpr bool _type_has_method_sequal_reduce = false;
static constexpr bool _type_has_method_shash_reduce = false;
// NOTE: the following field is not type index of Object
// but was intended to be used by sub-classes as default value.
// The type index of Object is TypeIndex::kRoot
static constexpr uint32_t _type_index = TypeIndex::kDynamic;
// Default constructor and copy constructor
Object() {}
// Override the copy and assign constructors to do nothing.
// This is to make sure only contents, but not deleter and ref_counter
// are copied when a child class copies itself.
// This will enable us to use make_object<ObjectClass>(*obj_ptr)
// to copy an existing object.
Object(const Object& other) { // NOLINT(*)
}
Object(Object&& other) { // NOLINT(*)
}
Object& operator=(const Object& other) { // NOLINT(*)
return *this;
}
Object& operator=(Object&& other) { // NOLINT(*)
return *this;
}
protected:
// The fields of the base object cell.
/*! \brief Type index(tag) that indicates the type of the object. */
uint32_t type_index_{0};
/*! \brief The internal reference counter */
RefCounterType ref_counter_{0};
/*!
* \brief deleter of this object to enable customized allocation.
* If the deleter is nullptr, no deletion will be performed.
* The creator of the object must always set the deleter field properly.
*/
FDeleter deleter_ = nullptr;
// Invariant checks.
static_assert(sizeof(int32_t) == sizeof(RefCounterType) &&
alignof(int32_t) == sizeof(RefCounterType),
"RefCounter ABI check.");
/*!
* \brief Get the type index using type key.
*
* When the function is first time called for a type,
* it will register the type to the type table in the runtime.
* If the static_tindex is TypeIndex::kDynamic, the function will
* allocate a runtime type index.
* Otherwise, we will populate the type table and return the static index.
*
* \param key the type key.
* \param static_tindex The current _type_index field.
* can be TypeIndex::kDynamic.
* \param parent_tindex The index of the parent.
* \param type_child_slots Number of slots reserved for its children.
* \param type_child_slots_can_overflow Whether to allow child to overflow the slots.
* \return The allocated type index.
*/
static uint32_t GetOrAllocRuntimeTypeIndex(const std::string& key, uint32_t static_tindex,
uint32_t parent_tindex, uint32_t type_child_slots,
bool type_child_slots_can_overflow);
// reference counter related operations
/*! \brief developer function, increases reference counter. */
inline void IncRef();
/*!
* \brief developer function, decrease reference counter.
* \note The deleter will be called when ref_counter_ becomes zero.
*/
inline void DecRef();
private:
/*!
* \return The usage count of the cell.
* \note We use stl style naming to be consistent with known API in shared_ptr.
*/
inline int use_count() const;
/*!
* \brief Check of this object is derived from the parent.
* \param parent_tindex The parent type index.
* \return The derivation results.
*/
bool DerivedFrom(uint32_t parent_tindex) const;
// friend classes
template <typename>
friend class ObjAllocatorBase;
template <typename>
friend class ObjectPtr;
friend class TVMRetValue;
friend class ObjectInternal;
};
/*!
* \brief Get a reference type from a raw object ptr type
*
* It is always important to get a reference type
* if we want to return a value as reference or keep
* the object alive beyond the scope of the function.
*
* \param ptr The object pointer
* \tparam RefType The reference type
* \tparam ObjectType The object type
* \return The corresponding RefType
*/
template <typename RelayRefType, typename ObjectType>
inline RelayRefType GetRef(const ObjectType* ptr);
/*!
* \brief Downcast a base reference type to a more specific type.
*
* \param ref The input reference
* \return The corresponding SubRef.
* \tparam SubRef The target specific reference type.
* \tparam BaseRef the current reference type.
*/
template <typename SubRef, typename BaseRef>
inline SubRef Downcast(BaseRef ref);
/*!
* \brief A custom smart pointer for Object.
* \tparam T the content data type.
* \sa make_object
*/
template <typename T>
class ObjectPtr {
public:
/*! \brief default constructor */
ObjectPtr() {}
/*! \brief default constructor */
ObjectPtr(std::nullptr_t) {} // NOLINT(*)
/*!
* \brief copy constructor
* \param other The value to be moved
*/
ObjectPtr(const ObjectPtr<T>& other) // NOLINT(*)
: ObjectPtr(other.data_) {}
/*!
* \brief copy constructor
* \param other The value to be moved
*/
template <typename U>
ObjectPtr(const ObjectPtr<U>& other) // NOLINT(*)
: ObjectPtr(other.data_) {
static_assert(std::is_base_of<T, U>::value,
"can only assign of child class ObjectPtr to parent");
}
/*!
* \brief move constructor
* \param other The value to be moved
*/
ObjectPtr(ObjectPtr<T>&& other) // NOLINT(*)
: data_(other.data_) {
other.data_ = nullptr;
}
/*!
* \brief move constructor
* \param other The value to be moved
*/
template <typename Y>
ObjectPtr(ObjectPtr<Y>&& other) // NOLINT(*)
: data_(other.data_) {
static_assert(std::is_base_of<T, Y>::value,
"can only assign of child class ObjectPtr to parent");
other.data_ = nullptr;
}
/*! \brief destructor */
~ObjectPtr() { this->reset(); }
/*!
* \brief Swap this array with another Object
* \param other The other Object
*/
void swap(ObjectPtr<T>& other) { // NOLINT(*)
std::swap(data_, other.data_);
}
/*!
* \return Get the content of the pointer
*/
T* get() const { return static_cast<T*>(data_); }
/*!
* \return The pointer
*/
T* operator->() const { return get(); }
/*!
* \return The reference
*/
T& operator*() const { // NOLINT(*)
return *get();
}
/*!
* \brief copy assignment
* \param other The value to be assigned.
* \return reference to self.
*/
ObjectPtr<T>& operator=(const ObjectPtr<T>& other) { // NOLINT(*)
// takes in plane operator to enable copy elison.
// copy-and-swap idiom
ObjectPtr(other).swap(*this); // NOLINT(*)
return *this;
}
/*!
* \brief move assignment
* \param other The value to be assigned.
* \return reference to self.
*/
ObjectPtr<T>& operator=(ObjectPtr<T>&& other) { // NOLINT(*)
// copy-and-swap idiom
ObjectPtr(std::move(other)).swap(*this); // NOLINT(*)
return *this;
}
/*!
* \brief nullptr check
* \return result of comparison of internal pointer with nullptr.
*/
explicit operator bool() const { return get() != nullptr; }
/*! \brief reset the content of ptr to be nullptr */
void reset() {
if (data_ != nullptr) {
data_->DecRef();
data_ = nullptr;
}
}
/*! \return The use count of the ptr, for debug purposes */
int use_count() const { return data_ != nullptr ? data_->use_count() : 0; }
/*! \return whether the reference is unique */
bool unique() const { return data_ != nullptr && data_->use_count() == 1; }
/*! \return Whether two ObjectPtr do not equal each other */
bool operator==(const ObjectPtr<T>& other) const { return data_ == other.data_; }
/*! \return Whether two ObjectPtr equals each other */
bool operator!=(const ObjectPtr<T>& other) const { return data_ != other.data_; }
/*! \return Whether the pointer is nullptr */
bool operator==(std::nullptr_t null) const { return data_ == nullptr; }
/*! \return Whether the pointer is not nullptr */
bool operator!=(std::nullptr_t null) const { return data_ != nullptr; }
private:
/*! \brief internal pointer field */
Object* data_{nullptr};
/*!
* \brief constructor from Object
* \param data The data pointer
*/
explicit ObjectPtr(Object* data) : data_(data) {
if (data != nullptr) {
data_->IncRef();
}
}
/*!
* \brief Move an ObjectPtr from an RValueRef argument.
* \param ref The rvalue reference.
* \return the moved result.
*/
static ObjectPtr<T> MoveFromRValueRefArg(Object** ref) {
ObjectPtr<T> ptr;
ptr.data_ = *ref;
*ref = nullptr;
return ptr;
}
// friend classes
friend class Object;
friend class ObjectRef;
friend struct ObjectPtrHash;
template <typename>
friend class ObjectPtr;
template <typename>
friend class ObjAllocatorBase;
friend class TVMPODValue_;
friend class TVMArgsSetter;
friend class TVMRetValue;
friend class TVMArgValue;
friend class TVMMovableArgValue_;
template <typename RelayRefType, typename ObjType>
friend RelayRefType GetRef(const ObjType* ptr);
template <typename BaseType, typename ObjType>
friend ObjectPtr<BaseType> GetObjectPtr(ObjType* ptr);
};
// Forward declaration, to prevent circular includes.
template <typename T>
class Optional;
/*! \brief Base class of all object reference */
class ObjectRef {
public:
/*! \brief default constructor */
ObjectRef() = default;
/*! \brief Constructor from existing object ptr */
explicit ObjectRef(ObjectPtr<Object> data) : data_(data) {}
/*!
* \brief Comparator
* \param other Another object ref.
* \return the compare result.
*/
bool same_as(const ObjectRef& other) const { return data_ == other.data_; }
/*!
* \brief Comparator
* \param other Another object ref.
* \return the compare result.
*/
bool operator==(const ObjectRef& other) const { return data_ == other.data_; }
/*!
* \brief Comparator
* \param other Another object ref.
* \return the compare result.
*/
bool operator!=(const ObjectRef& other) const { return data_ != other.data_; }
/*!
* \brief Comparator
* \param other Another object ref by address.
* \return the compare result.
*/
bool operator<(const ObjectRef& other) const { return data_.get() < other.data_.get(); }
/*!
* \return whether the object is defined(not null).
*/
bool defined() const { return data_ != nullptr; }
/*! \return the internal object pointer */
const Object* get() const { return data_.get(); }
/*! \return the internal object pointer */
const Object* operator->() const { return get(); }
/*! \return whether the reference is unique */
bool unique() const { return data_.unique(); }
/*! \return The use count of the ptr, for debug purposes */
int use_count() const { return data_.use_count(); }
/*!
* \brief Try to downcast the internal Object to a
* raw pointer of a corresponding type.
*
* The function will return a nullptr if the cast failed.
*
* if (const AddNode *ptr = node_ref.as<AddNode>()) {
* // This is an add node
* }
*
* \tparam ObjectType the target type, must be a subtype of Object
*/
template <typename ObjectType, typename = std::enable_if_t<std::is_base_of_v<Object, ObjectType>>>
inline const ObjectType* as() const;
/*!
* \brief Try to downcast the ObjectRef to a
* Optional<T> of the requested type.
*
* The function will return a NullOpt if the cast failed.
*
* if (Optional<Add> opt = node_ref.as<Add>()) {
* // This is an add node
* }
*
* \note While this method is declared in <tvm/runtime/object.h>,
* the implementation is in <tvm/runtime/container/optional.h> to
* prevent circular includes. This additional include file is only
* required in compilation units that uses this method.
*
* \tparam ObjectRefType the target type, must be a subtype of ObjectRef
*/
template <typename ObjectRefType,
typename = std::enable_if_t<std::is_base_of_v<ObjectRef, ObjectRefType>>>
inline Optional<ObjectRefType> as() const;
/*! \brief type indicate the container type. */
using ContainerType = Object;
// Default type properties for the reference class.
static constexpr bool _type_is_nullable = true;
protected:
/*! \brief Internal pointer that backs the reference. */
ObjectPtr<Object> data_;
/*! \return return a mutable internal ptr, can be used by sub-classes. */
Object* get_mutable() const { return data_.get(); }
/*!
* \brief Internal helper function downcast a ref without check.
* \note Only used for internal dev purposes.
* \tparam T The target reference type.
* \return The casted result.
*/
template <typename T>
static T DowncastNoCheck(ObjectRef ref) {
return T(std::move(ref.data_));
}
/*!
* \brief Clear the object ref data field without DecRef
* after we successfully moved the field.
* \param ref The reference data.
*/
static void FFIClearAfterMove(ObjectRef* ref) { ref->data_.data_ = nullptr; }
/*!
* \brief Internal helper function get data_ as ObjectPtr of ObjectType.
* \note only used for internal dev purpose.
* \tparam ObjectType The corresponding object type.
* \return the corresponding type.
*/
template <typename ObjectType>
static ObjectPtr<ObjectType> GetDataPtr(const ObjectRef& ref) {
return ObjectPtr<ObjectType>(ref.data_.data_);
}
// friend classes.
friend struct ObjectPtrHash;
friend class TVMRetValue;
friend class TVMArgsSetter;
friend class ObjectInternal;
template <typename SubRef, typename BaseRef>
friend SubRef Downcast(BaseRef ref);
};
/*!
* \brief Get an object ptr type from a raw object ptr.
*
* \param ptr The object pointer
* \tparam BaseType The reference type
* \tparam ObjectType The object type
* \return The corresponding RefType
*/
template <typename BaseType, typename ObjectType>
inline ObjectPtr<BaseType> GetObjectPtr(ObjectType* ptr);
/*! \brief ObjectRef hash functor */
struct ObjectPtrHash {
size_t operator()(const ObjectRef& a) const { return operator()(a.data_); }
template <typename T>
size_t operator()(const ObjectPtr<T>& a) const {
return std::hash<Object*>()(a.get());
}
};
/*! \brief ObjectRef equal functor */
struct ObjectPtrEqual {
bool operator()(const ObjectRef& a, const ObjectRef& b) const { return a.same_as(b); }
template <typename T>
size_t operator()(const ObjectPtr<T>& a, const ObjectPtr<T>& b) const {
return a == b;
}
};
/*!
* \brief helper macro to declare a base object type that can be inherited.
* \param TypeName The name of the current type.
* \param ParentType The name of the ParentType
*/
#define TVM_DECLARE_BASE_OBJECT_INFO(TypeName, ParentType) \
static_assert(!ParentType::_type_final, "ParentObj marked as final"); \
static uint32_t RuntimeTypeIndex() { \
static_assert(TypeName::_type_child_slots == 0 || ParentType::_type_child_slots == 0 || \
TypeName::_type_child_slots < ParentType::_type_child_slots, \
"Need to set _type_child_slots when parent specifies it."); \
if (TypeName::_type_index != ::tvm::runtime::TypeIndex::kDynamic) { \
return TypeName::_type_index; \
} \
return _GetOrAllocRuntimeTypeIndex(); \
} \
static uint32_t _GetOrAllocRuntimeTypeIndex() { \
static uint32_t tindex = Object::GetOrAllocRuntimeTypeIndex( \
TypeName::_type_key, TypeName::_type_index, ParentType::_GetOrAllocRuntimeTypeIndex(), \
TypeName::_type_child_slots, TypeName::_type_child_slots_can_overflow); \
return tindex; \
}
/*!
* \brief helper macro to declare type information in a final class.
* \param TypeName The name of the current type.
* \param ParentType The name of the ParentType
*/
#define TVM_DECLARE_FINAL_OBJECT_INFO(TypeName, ParentType) \
static const constexpr bool _type_final = true; \
static const constexpr int _type_child_slots = 0; \
TVM_DECLARE_BASE_OBJECT_INFO(TypeName, ParentType)
/*! \brief helper macro to suppress unused warning */
#if defined(__GNUC__)
#define TVM_ATTRIBUTE_UNUSED __attribute__((unused))
#else
#define TVM_ATTRIBUTE_UNUSED
#endif
#define TVM_STR_CONCAT_(__x, __y) __x##__y
#define TVM_STR_CONCAT(__x, __y) TVM_STR_CONCAT_(__x, __y)
#define TVM_OBJECT_REG_VAR_DEF static TVM_ATTRIBUTE_UNUSED uint32_t __make_Object_tid
/*!
* \brief Helper macro to register the object type to runtime.
* Makes sure that the runtime type table is correctly populated.
*
* Use this macro in the cc file for each terminal class.
*/
#define TVM_REGISTER_OBJECT_TYPE(TypeName) \
TVM_STR_CONCAT(TVM_OBJECT_REG_VAR_DEF, __COUNTER__) = TypeName::_GetOrAllocRuntimeTypeIndex()
/*
* \brief Define the default copy/move constructor and assign operator
* \param TypeName The class typename.
*/
#define TVM_DEFINE_DEFAULT_COPY_MOVE_AND_ASSIGN(TypeName) \
TypeName(const TypeName& other) = default; \
TypeName(TypeName&& other) = default; \
TypeName& operator=(const TypeName& other) = default; \
TypeName& operator=(TypeName&& other) = default;
/*
* \brief Define object reference methods.
* \param TypeName The object type name
* \param ParentType The parent type of the objectref
* \param ObjectName The type name of the object.
*/
#define TVM_DEFINE_OBJECT_REF_METHODS_WITHOUT_DEFAULT_CONSTRUCTOR(TypeName, ParentType, \
ObjectName) \
explicit TypeName(::tvm::runtime::ObjectPtr<::tvm::runtime::Object> n) : ParentType(n) {} \
TVM_DEFINE_DEFAULT_COPY_MOVE_AND_ASSIGN(TypeName); \
const ObjectName* operator->() const { return static_cast<const ObjectName*>(data_.get()); } \
const ObjectName* get() const { return operator->(); } \
using ContainerType = ObjectName;
/*
* \brief Define object reference methods.
* \param TypeName The object type name
* \param ParentType The parent type of the objectref
* \param ObjectName The type name of the object.
*/
#define TVM_DEFINE_OBJECT_REF_METHODS(TypeName, ParentType, ObjectName) \
TypeName() = default; \
TVM_DEFINE_OBJECT_REF_METHODS_WITHOUT_DEFAULT_CONSTRUCTOR(TypeName, ParentType, ObjectName)
/*
* \brief Define object reference methods that is not nullable.
*
* \param TypeName The object type name
* \param ParentType The parent type of the objectref
* \param ObjectName The type name of the object.
*/
#define TVM_DEFINE_NOTNULLABLE_OBJECT_REF_METHODS(TypeName, ParentType, ObjectName) \
explicit TypeName(::tvm::runtime::ObjectPtr<::tvm::runtime::Object> n) : ParentType(n) {} \
TVM_DEFINE_DEFAULT_COPY_MOVE_AND_ASSIGN(TypeName); \
const ObjectName* operator->() const { return static_cast<const ObjectName*>(data_.get()); } \
const ObjectName* get() const { return operator->(); } \
static constexpr bool _type_is_nullable = false; \
using ContainerType = ObjectName;
/*
* \brief Define object reference methods of whose content is mutable.
* \param TypeName The object type name
* \param ParentType The parent type of the objectref
* \param ObjectName The type name of the object.
* \note We recommend making objects immutable when possible.
* This macro is only reserved for objects that stores runtime states.
*/
#define TVM_DEFINE_MUTABLE_OBJECT_REF_METHODS(TypeName, ParentType, ObjectName) \
TypeName() = default; \
TVM_DEFINE_DEFAULT_COPY_MOVE_AND_ASSIGN(TypeName); \
explicit TypeName(::tvm::runtime::ObjectPtr<::tvm::runtime::Object> n) : ParentType(n) {} \
ObjectName* operator->() const { return static_cast<ObjectName*>(data_.get()); } \
using ContainerType = ObjectName;
/*
* \brief Define object reference methods that is both not nullable and mutable.
*
* \param TypeName The object type name
* \param ParentType The parent type of the objectref
* \param ObjectName The type name of the object.
*/
#define TVM_DEFINE_MUTABLE_NOTNULLABLE_OBJECT_REF_METHODS(TypeName, ParentType, ObjectName) \
explicit TypeName(::tvm::runtime::ObjectPtr<::tvm::runtime::Object> n) : ParentType(n) {} \
TVM_DEFINE_DEFAULT_COPY_MOVE_AND_ASSIGN(TypeName); \
ObjectName* operator->() const { return static_cast<ObjectName*>(data_.get()); } \
ObjectName* get() const { return operator->(); } \
static constexpr bool _type_is_nullable = false; \
using ContainerType = ObjectName;
/*!
* \brief Define CopyOnWrite function in an ObjectRef.
* \param ObjectName The Type of the Node.
*
* CopyOnWrite will generate a unique copy of the internal node.
* The node will be copied if it is referenced by multiple places.
* The function returns the raw pointer to the node to allow modification
* of the content.
*
* \code
*
* MyCOWObjectRef ref, ref2;
* ref2 = ref;
* ref.CopyOnWrite()->value = new_value;
* assert(ref2->value == old_value);
* assert(ref->value == new_value);
*
* \endcode
*/
#define TVM_DEFINE_OBJECT_REF_COW_METHOD(ObjectName) \
static_assert(ObjectName::_type_final, \
"TVM's CopyOnWrite may only be used for " \
"Object types that are declared as final, " \
"using the TVM_DECLARE_FINAL_OBJECT_INFO macro."); \
ObjectName* CopyOnWrite() { \
ICHECK(data_ != nullptr); \
if (!data_.unique()) { \
auto n = make_object<ObjectName>(*(operator->())); \
ObjectPtr<Object>(std::move(n)).swap(data_); \
} \
return static_cast<ObjectName*>(data_.get()); \
}
// Implementations details below
// Object reference counting.
#if TVM_OBJECT_ATOMIC_REF_COUNTER
inline void Object::IncRef() { ref_counter_.fetch_add(1, std::memory_order_relaxed); }
inline void Object::DecRef() {
if (ref_counter_.fetch_sub(1, std::memory_order_release) == 1) {
std::atomic_thread_fence(std::memory_order_acquire);
if (this->deleter_ != nullptr) {
(*this->deleter_)(this);
}
}
}
inline int Object::use_count() const { return ref_counter_.load(std::memory_order_relaxed); }
#else
inline void Object::IncRef() { ++ref_counter_; }
inline void Object::DecRef() {
if (--ref_counter_ == 0) {
if (this->deleter_ != nullptr) {
(*this->deleter_)(this);
}
}
}
inline int Object::use_count() const { return ref_counter_; }
#endif // TVM_OBJECT_ATOMIC_REF_COUNTER
template <typename TargetType>
inline bool Object::IsInstance() const {
const Object* self = this;
// NOTE: the following code can be optimized by
// compiler dead-code elimination for already known constants.
if (self != nullptr) {
// Everything is a subclass of object.
if (std::is_same<TargetType, Object>::value) return true;
if (TargetType::_type_final) {
// if the target type is a final type
// then we only need to check the equivalence.
return self->type_index_ == TargetType::RuntimeTypeIndex();
} else {
// if target type is a non-leaf type
// Check if type index falls into the range of reserved slots.
uint32_t begin = TargetType::RuntimeTypeIndex();
// The condition will be optimized by constant-folding.
if (TargetType::_type_child_slots != 0) {
uint32_t end = begin + TargetType::_type_child_slots;
if (self->type_index_ >= begin && self->type_index_ < end) return true;
} else {
if (self->type_index_ == begin) return true;
}
if (!TargetType::_type_child_slots_can_overflow) return false;
// Invariance: parent index is always smaller than the child.
if (self->type_index_ < TargetType::RuntimeTypeIndex()) return false;
// The rare slower-path, check type hierarchy.
return self->DerivedFrom(TargetType::RuntimeTypeIndex());
}
} else {
return false;
}
}
inline bool Object::unique() const { return use_count() == 1; }
template <typename ObjectType, typename>
inline const ObjectType* ObjectRef::as() const {
if (data_ != nullptr && data_->IsInstance<ObjectType>()) {
return static_cast<ObjectType*>(data_.get());
} else {
return nullptr;
}
}
template <typename RefType, typename ObjType>
inline RefType GetRef(const ObjType* ptr) {
static_assert(std::is_base_of<typename RefType::ContainerType, ObjType>::value,
"Can only cast to the ref of same container type");
if (!RefType::_type_is_nullable) {
ICHECK(ptr != nullptr);
}
return RefType(ObjectPtr<Object>(const_cast<Object*>(static_cast<const Object*>(ptr))));
}
template <typename BaseType, typename ObjType>
inline ObjectPtr<BaseType> GetObjectPtr(ObjType* ptr) {
static_assert(std::is_base_of<BaseType, ObjType>::value,
"Can only cast to the ref of same container type");
return ObjectPtr<BaseType>(static_cast<Object*>(ptr));
}
template <typename SubRef, typename BaseRef>
inline SubRef Downcast(BaseRef ref) {
if (ref.defined()) {
ICHECK(ref->template IsInstance<typename SubRef::ContainerType>())
<< "Downcast from " << ref->GetTypeKey() << " to " << SubRef::ContainerType::_type_key
<< " failed.";
} else {
ICHECK(SubRef::_type_is_nullable) << "Downcast from nullptr to not nullable reference of "
<< SubRef::ContainerType::_type_key;
}
return SubRef(std::move(ref.data_));
}
} // namespace runtime
} // namespace tvm
#endif // TVM_RUNTIME_OBJECT_H_